Optimization of the use of shellfish waste as a coagulant material for liquid waste from the paper industry in waste processing using the knorr method
DOI:
https://doi.org/10.61511/jmarpt.v1i2.2024.2023Keywords:
chitosan, coagulant, liquid waste, shell wasteAbstract
Background: The paper industry, in its process, utilizes a large amount of water, which in turn generates liquid waste containing chemicals with the potential to pollute the environment. The negative impact of this pollution not only impacts the balance of the environmental ecosystem, but also poses a risk to human health. In addition to the paper industry's wastewater problem, another problem is the accumulation of clamshell waste around the Kenjeran coastline. Findings: Poorly managed shell waste can cause air pollution due to unpleasant odors, damage the aesthetics of the beach environment, and become a hotbed of Coli bacteria that can cause diarrheal diseases in local residents. Thus, processing clamshell waste is an attractive solution to overcome the problem of paper industry liquid waste. This study aims to utilize shell waste from Kenjeran beach, Surabaya, to produce chitosan that can be used as a coagulant in the treatment of paper industry wastewater. Methods: The processing of green mussel shell waste (Perna viridis) into chitosan was carried out in several stages, namely: preparation stage, chitin extraction stage from green mussel shells (Perna viridis), chitosan synthesis stage using the Knorr method, and the last stage is the test stage of chitosan use in liquid waste. Conclusion: The shell waste treatment process involves chitin extraction by deproteination and demineralization, followed by chitosan synthesis using the Knorr method. The resulting chitosan, with a yield of 73.7%, proved effective as a coagulant in capturing colloidal particles in the effluent and forming floc precipitation. The use of chitosan at a dose of 600 ppm showed optimal results with a decrease in concentration and turbidity of the effluent reaching 59.35%, and lowering the pH by 0.3. Novelty/Originality of this article: the problem of liquid waste from the paper industry can be overcome with an environmentally friendly approach, while shell waste on Kenjeran Beach, Surabaya can be utilized economically by being converted into chitosan.
References
Agustina, A. (2015). Isolasi kitin, katerisasi, dan sintesis kitosan dari kulit udang. Jurnal Kimia, 9(2), 271–278. https://doi.org/10.24843/JCHEM.2015.v09.i02.p19
Ampera, M. P. J. (2018). Penurunan kekeruhan air baku IPA Badak Singa dengan penggunaan koagulan PAC dan plat alumunium pada proses koagulasi-elektrokoagulasi. Universitas Pasundan.
Arsyi, A. (2018). Kateterisasi nano kitosan dari cangkang kerang hijau dengan metode gelas ionik. Jurnal Teknologi Bahan Alam, 2(2), 106–111. https://journals.ums.ac.id/jtba/article/view/JTBA-19
Arvanitoyannis, I. S., & Kassaveti, A. (2008). Fish industry waste: Treatments, environmental impacts, current and potential uses. International Journal of Food Science & Technology, 43(4), 726–745. https://doi.org/10.1111/j.1365-2621.2006.01513.x
Darma, G. C. E. (2015). Pembentukan spontan komplek polielektrolit fibroin sutera dengan alginat sebagai model penghantaran obat. Jurusan Farmasi, Institut Teknologi Bandung.
Fachrurozi, M., Utami, L. B., & Suryani, D. (2010). Pengaruh variasi biomassa Pistia stratiotes L. terhadap penurunan kadar BOD, COD, dan TSS limbah cair tahu di Dusun Klero Sleman Yogyakarta. https://doi.org/10.12928/kesmas.v4i1.1100
Kurniawati, D., Setiawan, M. I., & Rahmawati, N. (2020). Pengelolaan limbah cangkang kerang sebagai upaya pengurangan sampah di kawasan pesisir Kenjeran. Jurnal Lingkungan Hidup, 15(2), 75–82.
Safari, Z. S. (2020). Use of chitosan and vanillin as edible coating in managing tomato fruit rot and quality during storage. University Putra Malaysia.
Shahidi, F., & Synowiecki, J. (1991). Isolation and characterization of nutrients and value- added products from snow crab (Chifroeceles opilio) and shrimp (Pandalus borealis) processing discards. Journal of Agriculture and Food Chemistry, 39(7), 1527–1532. https://doi.org/10.1021/jf00008a032
Aranaz, I. (2009). Functional characterization of chitin and chitosan. Current Chemical Biology, 3(2), 203–230. https://doi.org/10.2174/187231309788166415
Oktavianto, A. A., & Rosariawari, F. (2024). Analisis pemakaian tawas dan kualitas air produksi terhadap instalasi pengolahan air. Envirous, 4(2), 1–4. https://doi.org/10.33005/envirous.v4i2.170
Rafaat, D. (2009). Chitosan and its antimicrobial potential: A critical literature survey. Microbial Biotechnology, 2(2), 186–201. https://doi.org/10.1111/j.1751- 7915.2008.00080.x
Ratnani, R. D., Hartati, I., & Kurniasari, L. (2024). Pemanfaatan eceng gondok (Eichornia crassipes) untuk menurunkan kandungan COD (Chemical Oxygen Demand), pH, bau, dan warna pada limbah cair tahu. Laporan Penelitian dan Pengabdian Masyarakat. https://doi.org/10.36499/jim.v7i1.296
Ramos, S., et al. (2009). Remediation of lignin and its derivatives from pulp and paper industry wastewater by the combination of chemical precipitation and ozonation. Journal of Hazardous Materials, 169(1), 428–434. https://doi.org/10.1016/j.jhazmat.2009.03.152
Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001
Salsabila, C., Wahyuningsih, C., Fitriana, D. A., Asih, R. S., Nida, K., & Ferniah, R. S. (2022). Semi-manual processing of blood clamps waste into chitosan powder. International Journal of Research in Community Services, 3(1), 8–12. https://doi.org/10.46336/ijrcs.v3i1.185
Fernández-Villa, S. G. (2020). Effectiveness evaluation of Molisch's test for the identification of historical cellulose plastics. University Complutense de Madrid. https://hdl.handle.net/20.500.14352/8709
Sinardi, S., Prayatni, S., & Suprihanto, N. (2013). Pembuatan, karakterisasi, dan aplikasi kitosan dari cangkang kerang hijau (Mytulus virdis Linneaus) sebagai koagulan penjernih air. Konferensi Nasional Teknik Sipil Universitas Sebelas Maret (UNS).
Singh, R., Gautam, N., & Mishra, A. (2018). Role of chitosan in wastewater treatment. Journal of Applied Polymer Science, 135(2), 456–467. https://doi.org/10.3390/microorganisms10061180
Truong, T., Hausler, R., Monette, F., & Niquette, P. (2007). Fishery industrial waste valorization for the transformation of chitosan by hydrothermo-chemical method. Revue des Sciences de l’Eau, 20, 253–262. https://doi.org/10.7202/016170ar
Windari, W. (2019). Biobakterisida kitosan cangkang kerang darah sebagai anti-bakteri Ralstonia solanacearum. Proceeding Biology Education Conference, 16(1), 280–284. https://jurnal.uns.ac.id/prosbi/article/view/38350
Younes, M., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources: Structure, properties and applications. Marine Drugs, 13(3), 1133–1174. https://doi.org/10.3390/md13031133
Yusan, L. Y., Nailufa, Y., & Subagio, H. (2023). Nanopartikel kitosan limbah cangkang rajungan (Portunus pelagicus) terhadap aktivitas bakteri Staphylococcus aureus pada pasien gangren. Scopindo Media Pustaka.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rahayu Murti Ayuningtyas, M. Rizki Khoerul Fadilah

This work is licensed under a Creative Commons Attribution 4.0 International License.











