Flood risk assessment and regional detailed spatial planning in Lagos State: A remote sensing perspective
DOI:
https://doi.org/10.61511/crsusf.v2i1.1825Keywords:
climate change and urban planning, detailed spatial planning regional (RDTR), flood risk analysis; geospatial technologies, remote sensing, synthetic aperture radar (SAR)Abstract
Background: Lagos State, Nigeria, is increasingly confronting flooding as an aftermath of hasty urbanization, climate change, and inefficiency in land-use planning. This paper formally reviewed remote sensing technology application in flood hazard analysis and incorporating it into the Regional Detailed Spatial Planning (RDTR) framework. Methods: A systematic search of 40 peer-reviewed articles (2000–2023) was conducted following PRISMA guidelines to identify and analyze trends and patterns. Remote sensing technologies, including optical images and synthetic aperture radar (SAR), were used to monitor flood dynamics, evaluate vulnerability, and identify flood zones in near real-time. Indicators such as rainfall intensity, elevation, land use, and population density were also assessed. Findings: Although remote sensing provides actionable data for zoning and infrastructure planning in flood-prone areas, its application to RDTR planning is limited by insufficient high-resolution data, technical limitations, and stakeholders' coordination problems. The study also highlights the critical role of geospatial innovations in improving flood resilience and urban planning. Conclusion: Improved data access, technical capacity building, and multi-stakeholder collaboration are essential to address current limitations. Novelty/Originality of this article: This research bridges the gap between flood hazard mapping technologies and detailed spatial planning frameworks. It provides a framework that can guide policymakers and urban planners in Lagos and similar contexts toward sustainable flood risk management and urban development.
References
Abdelkareem, M., & Mansour, A. M. (2023). Risk assessment and management of vulnerable areas to flash flood hazards in arid regions using remote sensing and GIS-based knowledge-driven techniques. Natural Hazards, 117(3), 2269–2295. https://doi.org/10.1007/s11069-023-05942-x
Afifi, M. M., Mokhtar Khalifa, A. A., Wahaab, R. A., Moukhtar, I., & Elalfy, E. (2023). Estimation of the flood vulnerability index (FVI) for Alexandria city-Egypt: A case study. Journal of Engineering Sciences, 51(3), 207–222. https://doi.org/10.21608/JESAUN.2023.189225.1201
Ahmad, S., Peng, X., Ashraf, A., Yin, D., Chen, Z., Ahmed, R., Israr, M., & Jia, H. (2025). Building resilient urban drainage systems by integrated flood risk index for evidence-based planning. Journal of Environmental Management, 374, 124130. https://doi.org/10.1016/j.jenvman.2025.124130
Ajodo, A. E., & Olawepo, R. (2021). Flood vulnerability and incidence in Ibaji Local Government Area of Kogi State, Nigeria. Analele Universităţii Din Oradea.
Al-Chaar, G. K., Guertin, P. J., Valentino, M. K., Baxter, C. L., & Calfas, G. W. (2017). Construction material-based methodology for contingency base selection. Open Construction and Building Technology Journal, 11, 237–253. https://doi.org/10.2174/1874836801711010237
Alharbi, T. (2023). Mapping of groundwater, flood, and drought potential zones in Neom, Saudi Arabia, using GIS and remote sensing techniques. Water (Switzerland), 15(5). https://doi.org/10.3390/w15050966
Aliyu, A., Liman-Hamza, K., & Lawal, A. (2023). Floods in Sub-Saharan Africa: Causes, determinants, and health consequences. Nigerian Medical Journal, 64(1), 13–24.
Aslan, V. (2023). Evaluation of Birecik Basin flood detection with GIS-assisted AHP methods. KSCE Journal of Civil Engineering, 27(7), 2891–2907. https://doi.org/10.1007/s12205-023-1271-x
Baalousha, H. M., Younes, A., Yassin, M. A., & Fahs, M. (2023). Comparison of the fuzzy analytic hierarchy process (F-AHP) and fuzzy logic for flood exposure risk assessment in arid regions. Hydrology, 10(7). https://doi.org/10.3390/hydrology10070136
Cao, W., Zhou, Y., Güneralp, B., Li, X., Zhao, K., & Zhang, H. (2022). Increasing global urban exposure to flooding: An analysis of long-term annual dynamics. Science of the Total Environment, 817, 153012. https://doi.org/10.1016/j.scitotenv.2022.153012
Chaulagain, D., Ram Rimal, P., Ngando, S. N., Nsafon, B. E. K., Suh, D., & Huh, J.-S. (2023). Flood susceptibility mapping of Kathmandu metropolitan city using GIS-based multi-criteria decision analysis. Ecological Indicators, 154, 110653. https://doi.org/10.1016/j.ecolind.2023.110653
Datta, S., Nawaz, S., Hossen, M. N., Karim, M. E., Juthy, N. T., Hossain, M. L., & Kabir, M. H. (2023). Flood risk assessment in developing countries: Dealing with data quality and availability. In Handbook of Flood Risk Management in Developing Countries (pp. 197–216). https://doi.org/10.1201/9781003160823-16
Devitt, L., Neal, J., Coxon, G., Savage, J., & Wagener, T. (2023). Flood hazard potential reveals global floodplain settlement patterns. Nature Communications, 14(1), 1–11. https://doi.org/10.1038/s41467-023-38297-9
Dritsas, E., & Trigka, M. (2025). Remote sensing and geospatial analysis in the big data era: A survey. Remote Sensing, 17(3). https://doi.org/10.3390/rs17030550
Ekolu, J., Dieppois, B., Tramblay, Y., Villarini, G., Slater, L. J., Mahé, G., Paturel, J. E., Eden, J. M., Moulds, S., Sidibe, M., Camberlin, P., Pohl, B., & van de Wiel, M. (2024). Variability in flood frequency in sub-Saharan Africa: The role of large-scale climate modes of variability and their future impacts. Journal of Hydrology, 640, 131679. https://doi.org/10.1016/j.jhydrol.2024.131679
El-Rayes, A. E., Arnous, M. O., & Helmy, A. M. (2023). GIS-based flash flooding susceptibility analysis and water management in arid mountain ranges: Safaga Region, Red Sea Mountains, Egypt. Journal of Mountain Science, 20(12), 3665–3686. https://doi.org/10.1007/s11629-023-8142-2
Essien, E. E., Unigwe-Idoko, O. C., & Others. (2018). Flood risk assessment in Uyo Urban, Nigeria using geospatial tools. International Research Journal of Engineering and Technology. https://www.academia.edu/download/57075065/IRJET-V5I6118.pdf
Fashae, O. A., Tijani, M. N., Adekoya, A. E., Tijani, S. A., & Others. (2022). Comparative assessment of the changing pattern of land cover along the Southwestern coast of Nigeria using GIS and remote sensing techniques. Scientific African. https://www.sciencedirect.com/science/article/pii/S2468227622001934
He, X., Zhang, S., Xue, B., Zhao, T., & Wu, T. (2023). Cross-modal change detection flood extraction based on convolutional neural network. International Journal of Applied Earth Observation and Geoinformation, 117, 103197. https://doi.org/10.1016/j.jag.2023.103197
Hong, F., Wu, H., Li, J., & Paul, E. (2023). Evaluation of flood-vulnerable pavement network in support of resilience in pavement system management. Transportation Research Record, 2677(8), 474–482. https://doi.org/10.1177/03611981231156934
Hooker, H., Dance, S. L., Mason, D. C., Bevington, J., & Shelton, K. (2023). A multi-system comparison of forecast flooding extent using a scale-selective approach. Hydrology Research, 54(10), 1115–1133. https://doi.org/10.2166/nh.2023.025
Ighile, E. H. (2022). An assessment of the impacts of land use and socioeconomic changes on flooding risks in Nigeria [Master’s thesis, Nagoya University]. https://nagoya.repo.nii.ac.jp/record/2003901/files/k14270_thesis.pdf
Ikuemonisan, F. E., & Ozebo, V. C. (2020). Characterisation and mapping of land subsidence based on geodetic observations in Lagos, Nigeria. Geodesy and Geodynamics. https://www.sciencedirect.com/science/article/pii/S1674984720300227
Islam, T., Zeleke, E. B., Afroz, M., & Melesse, A. M. (2025). A systematic review of urban flood susceptibility mapping: Remote sensing, machine learning, and other modeling approaches. Remote Sensing, 17(3). https://doi.org/10.3390/rs17030524
Jibhakate, S. M., Timbadiya, P. V., & Patel, P. L. (2023). Multiparameter flood hazard, socioeconomic vulnerability and flood risk assessment for densely populated coastal city. Journal of Environmental Management, 344, 118405. https://doi.org/10.1016/j.jenvman.2023.118405
Kasim, O. F., Wahab, B., & Oweniwe, M. F. (2022). Urban expansion and enhanced flood risk in Africa: The example of Lagos. Environmental Hazards. https://doi.org/10.1080/17477891.2021.1932404
Kumar, R., Kumar, M., Tiwari, A., Majid, S. I., Bhadwal, S., Sahu, N., & Avtar, R. (2023). Assessment and mapping of riverine flood susceptibility (RFS) in India through coupled multicriteria decision making models and geospatial techniques. Water (Switzerland), 15(22). https://doi.org/10.3390/w15223918
Lazzarin, T., Defina, A., & Viero, D. P. (2023). Assessing 40 years of flood risk evolution at the micro-scale using an innovative modeling approach: The effects of urbanization and land planning. Geosciences (Switzerland), 13(4). https://doi.org/10.3390/geosciences13040112
Liu, G., Zhang, Y., Zhang, J., Lang, Q., Chen, Y., Wan, Z., & Liu, H. (2023a). Geographic-information-system-based risk assessment of flooding in Changchun urban rail transit system. Remote Sensing, 15(14). https://doi.org/10.3390/rs15143533
Liu, J., Wang, K., Lv, S., Fan, X., & He, H. (2023b). Flood risk assessment based on a cloud model in Sichuan Province, China. Sustainability (Switzerland), 15(20). https://doi.org/10.3390/su152014714
Lynggaard, J. R., Sebesvari, Z., Eberle, C., & Koli, M. (2022). Lagos floods. ResearchGate. https://doi.org/10.13140/RG.2.2.28097.43364
Mashala, M. J., Dube, T., Mudereri, B. T., Ayisi, K. K., & Ramudzuli, M. R. (2023). A systematic review on advancements in remote sensing for assessing and monitoring land use and land cover changes impacts on surface water resources in semi-arid tropical environments.
Miranda, F., Franco, A. B., Rezende, O., da Costa, B. B. F., Najjar, M., Haddad, A. N., & Miguez, M. (2023). A GIS-based index of physical susceptibility to flooding as a tool for flood risk management. Land, 12(7). https://doi.org/10.3390/land12071408
Ndimele, P. E., Ojewole, A. E., Mekuleyi, G. O., Badmos, L. A., Agosu, C. M., Olatunbosun, E. S., Lawal, O. O., Shittu, J. A., Joseph, O. O., Ositimehin, K. M., Ndimele, F. C., Ojewole, C. O., Abdulganiy, I. O., & Ayodele, O. T. (2024). Vulnerability, resilience and adaptation of Lagos coastal communities to flooding. Earth Science, Systems and Society, 4(July), 1–19. https://doi.org/10.3389/esss.2024.10087
Nekooie, M. A., & Gholizadeh, S. (2023). New hybrid method for vulnerability assessment in floodplain areas exposed to dam break. Engineering Reports, 5(12). https://doi.org/10.1002/eng2.12664
Nkeki, F. N., Bello, E. I., & Agbaje, I. G. (2022). Flood risk mapping and urban infrastructural susceptibility assessment using a GIS and analytic hierarchical raster fusion approach in the Ona River Basin, Nigeria. International Journal of Disaster Risk Reduction, 77, 103097. https://doi.org/10.1016/j.ijdrr.2022.103097
Nkwunonwo, U. C., Whitworth, M., & Baily, B. (2016). Review article: A review and critical analysis of the efforts towards urban flood risk management in the Lagos region of Nigeria. Natural Hazards and Earth System Sciences, 16(2), 349–369. https://doi.org/10.5194/nhess-16-349-2016
Okaka, O., Ebinne, E. S., & Onoh, C. (2013). Management of flood disaster risks in Nigeria. Journal of Environmental Management. https://cepajournal.com/index.php/jems/article/view/72
Osman, S. A., & Das, J. (2023). GIS-based flood risk assessment using multi-criteria decision analysis of Shebelle River Basin in southern Somalia. SN Applied Sciences, 5(5). https://doi.org/10.1007/s42452-023-05360-5
Ozden, A., Faghri, A., Li, M., & Tabrizi, K. (2016). Evaluation of synthetic aperture radar satellite remote sensing for pavement and infrastructure monitoring. Procedia Engineering, 145, 752–759. https://doi.org/10.1016/j.proeng.2016.04.098
Parajuli, G., Neupane, S., Kunwar, S., Adhikari, R., & Acharya, T. D. (2023). A GIS-based evacuation route planning in flood-susceptible area of Siraha Municipality, Nepal. ISPRS International Journal of Geo-Information, 12(7). https://doi.org/10.3390/ijgi12070286
Pizzorni, M., Innocenti, A., & Tollin, N. (2024). Droughts and floods in a changing climate and implications for multi-hazard urban planning: A review. City and Environment Interactions, 24(June). https://doi.org/10.1016/j.cacint.2024.100169
Porębska, A., Muszyński, K., Godyń, I., & Racoń-Leja, K. (2023). City and water risk: Accumulated runoff mapping analysis as a tool for sustainable land use planning. Land, 12(7). https://doi.org/10.3390/land12071345
Prashar, N., Lakra, H. S., Shaw, R., & Kaur, H. (2023). Urban flood resilience: A comprehensive review of assessment methods, tools, and techniques to manage disaster. Progress in Disaster Science, 20(September), 100299. https://doi.org/10.1016/j.pdisas.2023.100299
Pungching, J., & Pilailar, S. (2023). Developing a flood forecasting system with machine learning and applying to geographic information system. Geographia Technica, 18(1), 1–18. https://doi.org/10.21163/GT_2023.181.01
Pusdekar, P. N., & Dudul, S. V. (2023). Performance measures of frequency ratio, weight of evidence and AHP models for flood risk assessment of Panchganga River Basin (PRB), Kolhapur (India). Disaster Advances, 16(7), 31–41. https://doi.org/10.25303/1607da031041
Quagliolo, C., Roebeling, P., Matos, F., Pezzoli, A., & Comino, E. (2023). Pluvial flood adaptation using nature-based solutions: An integrated biophysical-economic assessment. Science of the Total Environment, 902. https://doi.org/10.1016/j.scitotenv.2023.166202
Rawat, M., Jain, S. K., Ahmed, R., & Lohani, A. K. (2023). Glacial lake outburst flood risk assessment using remote sensing and hydrodynamic modeling: A case study of Satluj Basin, Western Himalayas, India. Environmental Science and Pollution Research, 30(14), 41591–41608. https://doi.org/10.1007/s11356-023-25134-1
Rodrigues da Silva, A., Estima, J., Marques, J., Gamito, I., Serra, A., Moura, L., Ricardo, A. M., Mendes, L., & Ferreira, R. M. L. (2023). A Web GIS platform to modeling, simulate and analyze flood events: The RiverCure Portal. ISPRS International Journal of Geo-Information, 12(7). https://doi.org/10.3390/ijgi12070268
Shawky, M., & Hassan, Q. K. (2023). Geospatial modeling based-multi-criteria decision-making for flash flood susceptibility zonation in an arid area. Remote Sensing, 15(10). https://doi.org/10.3390/rs15102561
Shuaibu, A., Hounkpè, J., Bossa, Y. A., & Kalin, R. M. (2022). Flood risk assessment and mapping in the Hadejia River Basin, Nigeria, using hydro-geomorphic approach and multi-criterion decision-making method. Water (Switzerland), 14(22). https://doi.org/10.3390/w14223709
Shukla, B. K., & Verma, S. (2024). Harnessing geospatial technology for sustainable development: A multifaceted analysis of current practices and future prospects. https://doi.org/10.1007/978-3-031-65683-5
Sibandze, P., Kalumba, M., Abayomi Afuye, G., & Leocadia, Z. (2024). Geospatial mapping and meteorological flood risk assessment: A global research trend analysis. Environmental Management, 15, 137–154. https://doi.org/10.1007/s00267-024-02059-0
Sigit, A., Koyama, M., & Harada, M. (2023). Flood risk assessment focusing on exposed social characteristics in Central Java, Indonesia. Sustainability (Switzerland), 15(24). https://doi.org/10.3390/su152416856
Thapa, P. (2021). Using geospatial technologies for disaster management in developing countries. Journal of Remote Sensing & GIS, 9(4), 13.
Vaddiraju, S. C., & Talari, R. (2023). Urban flood susceptibility analysis of Saroor Nagar Watershed of India using geomatics-based multi-criteria analysis framework. Environmental Science and Pollution Research, 30(49), 107021–107040. https://doi.org/10.1007/s11356-022-24672-4
Yin, J., Dong, J., Hamm, N. A. S., Li, Z., Wang, J., Xing, H., & Fu, P. (2021). Integrating remote sensing and geospatial big data for urban land use mapping: A review. International Journal of Applied Earth Observation and Geoinformation, 103, 102514. https://doi.org/10.1016/j.jag.2021.102514
Zhang, W., Zhao, R., Yao, Y., Wan, Y., Wu, P., Li, J., ... & Zhang, Y. (2025). Multi-Resolution SAR and Optical Remote Sensing Image Registration Methods: A Review, Datasets, and Future Perspectives. arXiv preprint arXiv:2502.01002.
Ziya, O., & Safaie, A. (2023). Probabilistic modeling framework for flood risk assessment: A case study of Poldokhtar City. Journal of Hydrology: Regional Studies, 47. https://doi.org/10.1016/j.ejrh.2023.101393
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2025 Kabiru Abdullahi Abdulhamid, Parluhutan Manurung

This work is licensed under a Creative Commons Attribution 4.0 International License.