Studi literatur: restorasi lahan pascatambang batu bara di Kalimantan Timur
DOI:
https://doi.org/10.61511/pacc.v1i1.2024.620Keywords:
coal mining, environmental impact, land rehabilitationAbstract
Background: Coal plays a significant role in Indonesia's primary energy mix, particularly in electricity generation. However, its extensive use results in serious environmental impacts, primarily due to open-pit mining methods that damage ecosystems and reduce biodiversity. Therefore, post-mining land rehabilitation is crucial to restore disturbed ecosystems and mitigate their negative impacts. Method: The method used in this study is a systematic literature review (SLR). The data used are sourced from the Central Bureau of Statistics and the outlook of related agencies. Results: The Mineral and Coal Law establishes a reclamation obligation for companies. The Mineral and Coal Mining Law mandates reclamation obligations for mining companies, accompanied by the payment of reclamation security funds to government banks. However, challenges remain in implementing reclamation and mine closure, particularly in East Kalimantan, where coal mining is a major industry. Sustainable environmental management and attention to post-mining land rehabilitation are needed to ensure that the environmental impacts of the mining industry are effectively managed. Careful monitoring and learning from the experiences of other countries, such as the UK and China, can assist the Indonesian government in developing best practices in ecological restoration and sustainable natural resource management.
References
Afin, A. P., & Kiono, B. F. T. (2021). Potensi Energi Batubara serta Pemanfaatan dan Teknologinya di Indonesia Tahun 2020 – 2050 : Gasifikasi Batubara. Jurnal Energi Baru Dan Terbarukan, 2(2), 144–122. https://doi.org/10.14710/jebt.2021.11429
Ahirwal, J., & Pandey, V. C. (2021). Restoration of mine degraded land for sustainable environmental development. Restoration Ecology, 29(4). https://doi.org/10.1111/rec.13268
Bandyopadhyay, S., & Maiti, S. K. (2022). Steering restoration of coal mining degraded ecosystem to achieve sustainable development goal-13 (climate action): United Nations decade of ecosystem restoration (2021–2030). Environmental Science and Pollution Research, 29(59), 88383–88409. https://doi.org/10.1007/s11356-022-23699-x
Baral, H., Guariguata, M. R., & Keenan, R. J. (2016). A proposed framework for assessing ecosystem goods and services from planted forests. Ecosystem Services, 22(December 2015), 260–268. https://doi.org/10.1016/j.ecoser.2016.10.002
Baskoro, F. R., Takahashi, K., Morikawa, K., & Nagasawa, K. (2021). System dynamics approach in determining coal utilization scenario in Indonesia. Resources Policy, 73, 102209. https://doi.org/https://doi.org/10.1016/j.resourpol.2021.102209
Bian, Z., Dong, J., Lei, S., Leng, H., Mu, S., & Wang, H. (2009). The impact of disposal and treatment of coal mining wastes on environment and farmland. Environmental Geology, 58(3), 625–634. https://doi.org/10.1007/s00254-008-1537-0
Brodny, J., & Tutak, M. (2022). Challenges of the polish coal mining industry on its way to innovative and sustainable development. Journal of Cleaner Production, 375, 134061. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.134061
Brown, B., & Spiegel, S. J. (2017). Resisting coal: Hydrocarbon politics and assemblages of protest in the UK and Indonesia. Geoforum, 85(June), 101–111. https://doi.org/10.1016/j.geoforum.2017.07.015
Burger, J. A., & Zipper, C. E. (2018). How to restore forests on surface-mined land.
Carrasco, L. R., Nghiem, T. P. L., Sunderland, T., & Koh, L. P. (2014). Economic valuation of ecosystem services fails to capture biodiversity value of tropical forests. Biological Conservation, 178, 163–170. https://doi.org/10.1016/j.biocon.2014.08.007
Chiu, Y., Huang, K.-Y., Chang, T.-H., & Lin, T.-Y. (2021). Efficiency assessment of coal mine use and land restoration: Considering climate change and income differences. Resources Policy, 73, 102130. https://doi.org/https://doi.org/10.1016/j.resourpol.2021.102130
de Groot, R., Brander, L., van der Ploeg, S., Costanza, R., Bernard, F., Braat, L., Christie, M., Crossman, N., Ghermandi, A., Hein, L., Hussain, S., Kumar, P., McVittie, A., Portela, R., Rodriguez, L. C., ten Brink, P., & van Beukering, P. (2012). Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services, 1(1), 50–61. https://doi.org/10.1016/j.ecoser.2012.07.005
del Mar Montiel-Rozas, M., Panettieri, M., Madejón, P., & Madejón, E. (2016). Carbon Sequestration in Restored Soils by Applying Organic Amendments. Land Degradation and Development, 27(3), 620–629. https://doi.org/10.1002/ldr.2466
Dowarah, J., Deka Boruah, H. P., Gogoi, J., Pathak, N., Saikia, N., & Handique, A. K. (2009). Eco-restoration of a high-sulphur coal mine overburden dumping site in northeast India: A case study. Journal of Earth System Science, 118(5), 597–608. https://doi.org/10.1007/s12040-009-0042-5
Fang, Y., Singh, B. P., Collins, D., Armstrong, R., Van Zwieten, L., & Tavakkoli, E. (2020). Nutrient stoichiometry and labile carbon content of organic amendments control microbial biomass and carbon-use efficiency in a poorly structured sodic-subsoil. Biology and Fertility of Soils, 56(2), 219–233. https://doi.org/10.1007/s00374-019-01413-3
Feng, Y., Wang, J., Bai, Z., & Reading, L. (2019). Effects of surface coal mining and land reclamation on soil properties: A review. Earth-Science Reviews, 191, 12–25. https://doi.org/https://doi.org/10.1016/j.earscirev.2019.02.015
Ghose, M. K., & Majee, S. R. (2000). Assessment of dust generation due to opencast coal mining - An Indian case study. Environmental Monitoring and Assessment, 61(2), 255–263. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034104763&partnerID=40&md5=1a650f061e7bbc7df995339332b75f89
Gilberthorpe, E., & Banks, G. (2012). Development on whose terms?: CSR discourse and social realities in Papua New Guinea’s extractive industries sector. Resources Policy, 37(2), 185–193. https://doi.org/10.1016/j.resourpol.2011.09.005
Hermawan, B. (2011). Peningkatan Kualitas Lahan Bekas Tambang melalui Revegetasi dan Kesesuaiannya Sebagai Lahan Pertanian Tanaman Pangan. Prosiding Seminar Nasional Budidaya Pertanian, 60–70. https://core.ac.uk/download/pdf/35319567.pdf
Hirons, M., Hilson, G., Asase, A., & Hodson, M. E. (2014). Mining in a changing climate: What scope for forestry-based legacies? Journal of Cleaner Production, 84(1), 430–438. https://doi.org/10.1016/j.jclepro.2013.11.025
Hu, Z., Fu, Y., Xiao, W., Zhao, Y., & Wei, T. (2015). Ecological restoration plan for abandoned underground coal mine site in Eastern China. International Journal of Mining, Reclamation and Environment, 29(4), 316–330. https://doi.org/10.1080/17480930.2014.1000645
Iskandar, I., Suryaningtyas, D. T., Baskoro, D. P. T., Budi, S. W., Gozali, I., Saridi, S., Masyhuri, M., & Dultz, S. (2022). The regulatory role of mine soil properties in the growth of revegetation plants in the post-mine landscape of East Kalimantan. Ecological Indicators, 139, 108877. https://doi.org/https://doi.org/10.1016/j.ecolind.2022.108877
Johnston, D., Potter, H., Jones, C., Rolley, S., Watson, I., & Pritchard, J. (2008). Abandoned mines and the water environment. In Science Report (Issue SC030136/SR41rSCHO0508BNZS-E-P). http://mwen.info/docs/imwa_2008/IMWA2008_128_Johnston.pdf
Juwarkar, A. A., & Jambhulkar, H. P. (2008). Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Bioresource Technology, 99(11), 4732–4741. https://doi.org/10.1016/j.biortech.2007.09.060
Kodir, A., Hartono, D. M., Haeruman, H., & Mansur, I. (2017). Integrated post mining landscape for sustainable land use: A case study in South Sumatera, Indonesia. Sustainable Environment Research, 27(4), 203–213. https://doi.org/https://doi.org/10.1016/j.serj.2017.03.003
Kubiszewski, I., Costanza, R., Anderson, S., & Sutton, P. (2017). The future value of ecosystem services: Global scenarios and national implications. Ecosystem Services, 26, 289–301. https://doi.org/10.1016/j.ecoser.2017.05.004
Kurniawan, R., Saputra, A. M. W., Wijayanto, A. W., & Caesarendra, W. (2022). Eco-environment vulnerability assessment using remote sensing approach in East Kalimantan, Indonesia. Remote Sensing Applications: Society and Environment, 27, 100791. https://doi.org/https://doi.org/10.1016/j.rsase.2022.100791
Li, G., Hu, Z., Li, P., Yuan, D., Feng, Z., Wang, W., & Fu, Y. (2022). Innovation for sustainable mining: Integrated planning of underground coal mining and mine reclamation. Journal of Cleaner Production, 351, 131522. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.131522
Li, H., Shao, H., Li, W., Bi, R., & Bai, Z. (2012). Improving Soil Enzyme Activities and Related Quality Properties of Reclaimed Soil by Applying Weathered Coal in Opencast-Mining Areas of the Chinese Loess Plateau. CLEAN – Soil, Air, Water, 40(3), 233–238. https://doi.org/https://doi.org/10.1002/clen.201000579
Li, Y., Chiu, Y., & Lin, T.-Y. (2019). Coal production efficiency and land destruction in China’s coal mining industry. Resources Policy, 63, 101449. https://doi.org/10.1016/j.resourpol.2019.101449
Li, Y., Chiu, Y., Liu, Y., Lin, T.-Y., & Chang, T.-H. (2020). The impact of the media and environmental pollution on the economy and health using a modified meta 2-stage EBM Malmquist model. INQUIRY: The Journal of Health Care Organization, Provision, and Financing, 57, 0046958020921070. https://journals.sagepub.com/doi/pdf/10.1177/0046958020921070
Li, Y., Chiu, Y., Wang, L., Zhou, Y., & Lin, T.-Y. (2020). Dynamic and network slack-based measure analysis of China’s regional energy and air pollution reduction efficiencies. Journal of Cleaner Production, 251, 119546. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.119546
Lin, B., & Zhu, J. (2017). Energy and carbon intensity in China during the urbanization and industrialization process: A panel VAR approach. Journal of Cleaner Production, 168(2017), 780–790. https://doi.org/10.1016/j.jclepro.2017.09.013
Maiti, S. K. (2013). Ecorestoration of the coalmine degraded lands. Ecorestoration of the Coalmine Degraded Lands. https://doi.org/10.1007/978-81-322-0851-8
O’Connor, D., Zheng, X., Hou, D., Shen, Z., Li, G., Miao, G., O’Connell, S., & Guo, M. (2019). Phytoremediation: Climate change resilience and sustainability assessment at a coastal brownfield redevelopment. Environment International, 130(April). https://doi.org/10.1016/j.envint.2019.104945
Oktorina, S. (2018). Kebijakan Reklamasi Dan Revegetasi Lahan Bekas Tambang (Studi Kasus Tambang Batubara Indonesia). Al-Ard: Jurnal Teknik Lingkungan, 4(1), 16–20. https://doi.org/10.29080/alard.v4i1.411
Patiung, O., Sinukaban, N., Tarigan, S. D., & Darusman, D. (2011). Pengaruh Umur Reklamasi Lahan Bekas Tambang Batubara Terhadap Fungsi Hidrologis. Hidrolitan, 2(2), 60–73.
Putra, G., & Maulud, A. R. (2020). Peramalan Kebutuhan Batubara Menggunakan Metode Single Exponential Smoothing di PT . Solusi Bangun Andalas. Jurnal Optimalisasi, 6, 131–141. https://core.ac.uk/download/pdf/336875966.pdf
Resosudarmo, B. P., Resosudarmo, I. A. P., Sarosa, W., & Subiman, N. L. (2009). Socioeconomic conflicts in Indonesia’s mining industry. Exploiting Natural Resources: Growth, Instability, and Conflict in the Middle East and Asia, Washington, DC: The Henry L. Stimson Center, 33–48. https://www.jstor.org/stable/pdf/resrep10917.8.pdf
Sannigrahi, S., Chakraborti, S., Joshi, P. K., Keesstra, S., Sen, S., Paul, S. K., Kreuter, U., Sutton, P. C., Jha, S., & Dang, K. B. (2019). Ecosystem service value assessment of a natural reserve region for strengthening protection and conservation. Journal of Environmental Management, 244(November 2018), 208–227. https://doi.org/10.1016/j.jenvman.2019.04.095
Shao, Y., Xu, Q., & Wei, X. (2023). Progress of Mine Land Reclamation and Ecological Restoration Research Based on Bibliometric Analysis. Sustainability (Switzerland), 15(13). https://doi.org/10.3390/su151310458
Sheoran, V., Sheoran, A. S., & Poonia, P. (2010). Soil reclamation of abandoned mine land by revegetation: a review. International Journal of Soil, Sediment and Water, 3(2), 13. https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1107&context=intljssw
Shrestha, R. K., & Lal, R. (2010). Carbon and nitrogen pools in reclaimed land under forest and pasture ecosystems in Ohio, USA. Geoderma, 157(3), 196–205. https://doi.org/https://doi.org/10.1016/j.geoderma.2010.04.013
Sinadia, H. (2020). Outlook Industri Pertambangan Batubara Nasional ditengah Transisi Energi. 1–27.
Taheri, W. I., & Bever, J. D. (2010). Adaptation of plants and arbuscular mycorrhizal fungi to coal tailings in Indiana. Applied Soil Ecology, 45(3), 138–143. https://doi.org/https://doi.org/10.1016/j.apsoil.2010.03.004
Tawaraya, K., & Turjaman, M. (2014). Use of arbuscular mycorrhizal fungi for reforestation of degraded tropical forests. In Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration (pp. 357–373). Springer. https://link.springer.com/chapter/10.1007/978-3-662-45370-4_22
Toumbourou, T., Muhdar, M., Werner, T., & Bebbington, A. (2020). Political ecologies of the post-mining landscape: Activism, resistance, and legal struggles over Kalimantan’s coal mines. Energy Research and Social Science, 65(September 2019), 101476. https://doi.org/10.1016/j.erss.2020.101476
Tripathi, N., Singh, R. S., & Hills, C. D. (2016). Soil carbon development in rejuvenated Indian coal mine spoil. Ecological Engineering, 90, 482–490. https://doi.org/10.1016/J.ECOLENG.2016.01.019
Verstegen, J. A., van der Laan, C., Dekker, S. C., Faaij, A. P. C., & Santos, M. J. (2019). Recent and projected impacts of land use and land cover changes on carbon stocks and biodiversity in East Kalimantan, Indonesia. Ecological Indicators, 103, 563–575. https://doi.org/https://doi.org/10.1016/j.ecolind.2019.04.053
Wu, Y. (2019). Coal Resources Distribution and Its Influence on Industrial Development and Underground Water in UK. Journal of Coastal Research, 93(sp1), 97–101. https://doi.org/10.2112/SI93-014.1
Wulandari, D., Saridi, Cheng, W., & Tawaraya, K. (2016). Arbuscular mycorrhizal fungal inoculation improves Albizia saman and Paraserianthes falcataria growth in post-opencast coal mine field in East Kalimantan, Indonesia. Forest Ecology and Management, 376, 67–73. https://doi.org/https://doi.org/10.1016/j.foreco.2016.06.008
Yuan, M., Ouyang, J., Zheng, S., Tian, Y., Sun, R., Bao, R., Li, T., Yu, T., Li, S., Wu, D., Liu, Y., Xu, C., & Zhu, Y. (2022). Research on Ecological Effect Assessment Method of Ecological Restoration of Open-Pit Coal Mines in Alpine Regions. International Journal of Environmental Research and Public Health, 19(13). https://doi.org/10.3390/ijerph19137682
Zhang, B. H., & Xu, Y. T. (2012). Analyzing ecological environmental effect of coal mine closure. Applied Mechanics and Materials, 209, 1183–1189. https://www.scientific.net/AMM.209-211.1183
Zhang, M., Wang, J., Zhang, Y., & Wang, J. (2023). Ecological response of land use change in a large opencast coal mine area of China. Resources Policy, 82, 103551. https://doi.org/https://doi.org/10.1016/j.resourpol.2023.103551
Zhou, W., Yang, K., Bai, Z., Cheng, H., & Liu, F. (2017). The development of topsoil properties under different reclaimed land uses in the Pingshuo opencast coalmine of Loess Plateau of China. Ecological Engineering, 100, 237–245. https://doi.org/https://doi.org/10.1016/j.ecoleng.2016.12.028
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2024 Peatland Agriculture and Climate Change Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.