Studi literatur: restorasi lahan pascatambang batu bara di Kalimantan Timur

Authors

  • Assyifa Fauzia Sekolah Ilmu Lingkungan, Universitas Indonesia, Indonesia
  • Muhammad Nabil Makarim Sekolah Ilmu Lingkungan, Universitas Indonesia, Indonesia

DOI:

https://doi.org/10.61511/pacc.v1i1.2024.620

Keywords:

coal mining, environmental impact, land rehabilitation

Abstract

Background: Coal plays a significant role in Indonesia's primary energy mix, particularly in electricity generation. However, its extensive use results in serious environmental impacts, primarily due to open-pit mining methods that damage ecosystems and reduce biodiversity. Therefore, post-mining land rehabilitation is crucial to restore disturbed ecosystems and mitigate their negative impacts. Method: The method used in this study is a systematic literature review (SLR). The data used are sourced from the Central Bureau of Statistics and the outlook of related agencies. Results: The Mineral and Coal Law establishes a reclamation obligation for companies. The Mineral and Coal Mining Law mandates reclamation obligations for mining companies, accompanied by the payment of reclamation security funds to government banks. However, challenges remain in implementing reclamation and mine closure, particularly in East Kalimantan, where coal mining is a major industry. Sustainable environmental management and attention to post-mining land rehabilitation are needed to ensure that the environmental impacts of the mining industry are effectively managed. Careful monitoring and learning from the experiences of other countries, such as the UK and China, can assist the Indonesian government in developing best practices in ecological restoration and sustainable natural resource management.

References

Afin, A. P., & Kiono, B. F. T. (2021). Potensi Energi Batubara serta Pemanfaatan dan Teknologinya di Indonesia Tahun 2020 – 2050 : Gasifikasi Batubara. Jurnal Energi Baru Dan Terbarukan, 2(2), 144–122. https://doi.org/10.14710/jebt.2021.11429

Ahirwal, J., & Pandey, V. C. (2021). Restoration of mine degraded land for sustainable environmental development. Restoration Ecology, 29(4). https://doi.org/10.1111/rec.13268

Bandyopadhyay, S., & Maiti, S. K. (2022). Steering restoration of coal mining degraded ecosystem to achieve sustainable development goal-13 (climate action): United Nations decade of ecosystem restoration (2021–2030). Environmental Science and Pollution Research, 29(59), 88383–88409. https://doi.org/10.1007/s11356-022-23699-x

Baral, H., Guariguata, M. R., & Keenan, R. J. (2016). A proposed framework for assessing ecosystem goods and services from planted forests. Ecosystem Services, 22(December 2015), 260–268. https://doi.org/10.1016/j.ecoser.2016.10.002

Baskoro, F. R., Takahashi, K., Morikawa, K., & Nagasawa, K. (2021). System dynamics approach in determining coal utilization scenario in Indonesia. Resources Policy, 73, 102209. https://doi.org/https://doi.org/10.1016/j.resourpol.2021.102209

Bian, Z., Dong, J., Lei, S., Leng, H., Mu, S., & Wang, H. (2009). The impact of disposal and treatment of coal mining wastes on environment and farmland. Environmental Geology, 58(3), 625–634. https://doi.org/10.1007/s00254-008-1537-0

Brodny, J., & Tutak, M. (2022). Challenges of the polish coal mining industry on its way to innovative and sustainable development. Journal of Cleaner Production, 375, 134061. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.134061

Brown, B., & Spiegel, S. J. (2017). Resisting coal: Hydrocarbon politics and assemblages of protest in the UK and Indonesia. Geoforum, 85(June), 101–111. https://doi.org/10.1016/j.geoforum.2017.07.015

Burger, J. A., & Zipper, C. E. (2018). How to restore forests on surface-mined land.

Carrasco, L. R., Nghiem, T. P. L., Sunderland, T., & Koh, L. P. (2014). Economic valuation of ecosystem services fails to capture biodiversity value of tropical forests. Biological Conservation, 178, 163–170. https://doi.org/10.1016/j.biocon.2014.08.007

Chiu, Y., Huang, K.-Y., Chang, T.-H., & Lin, T.-Y. (2021). Efficiency assessment of coal mine use and land restoration: Considering climate change and income differences. Resources Policy, 73, 102130. https://doi.org/https://doi.org/10.1016/j.resourpol.2021.102130

de Groot, R., Brander, L., van der Ploeg, S., Costanza, R., Bernard, F., Braat, L., Christie, M., Crossman, N., Ghermandi, A., Hein, L., Hussain, S., Kumar, P., McVittie, A., Portela, R., Rodriguez, L. C., ten Brink, P., & van Beukering, P. (2012). Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services, 1(1), 50–61. https://doi.org/10.1016/j.ecoser.2012.07.005

del Mar Montiel-Rozas, M., Panettieri, M., Madejón, P., & Madejón, E. (2016). Carbon Sequestration in Restored Soils by Applying Organic Amendments. Land Degradation and Development, 27(3), 620–629. https://doi.org/10.1002/ldr.2466

Dowarah, J., Deka Boruah, H. P., Gogoi, J., Pathak, N., Saikia, N., & Handique, A. K. (2009). Eco-restoration of a high-sulphur coal mine overburden dumping site in northeast India: A case study. Journal of Earth System Science, 118(5), 597–608. https://doi.org/10.1007/s12040-009-0042-5

Fang, Y., Singh, B. P., Collins, D., Armstrong, R., Van Zwieten, L., & Tavakkoli, E. (2020). Nutrient stoichiometry and labile carbon content of organic amendments control microbial biomass and carbon-use efficiency in a poorly structured sodic-subsoil. Biology and Fertility of Soils, 56(2), 219–233. https://doi.org/10.1007/s00374-019-01413-3

Feng, Y., Wang, J., Bai, Z., & Reading, L. (2019). Effects of surface coal mining and land reclamation on soil properties: A review. Earth-Science Reviews, 191, 12–25. https://doi.org/https://doi.org/10.1016/j.earscirev.2019.02.015

Ghose, M. K., & Majee, S. R. (2000). Assessment of dust generation due to opencast coal mining - An Indian case study. Environmental Monitoring and Assessment, 61(2), 255–263. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034104763&partnerID=40&md5=1a650f061e7bbc7df995339332b75f89

Gilberthorpe, E., & Banks, G. (2012). Development on whose terms?: CSR discourse and social realities in Papua New Guinea’s extractive industries sector. Resources Policy, 37(2), 185–193. https://doi.org/10.1016/j.resourpol.2011.09.005

Hermawan, B. (2011). Peningkatan Kualitas Lahan Bekas Tambang melalui Revegetasi dan Kesesuaiannya Sebagai Lahan Pertanian Tanaman Pangan. Prosiding Seminar Nasional Budidaya Pertanian, 60–70. https://core.ac.uk/download/pdf/35319567.pdf

Hirons, M., Hilson, G., Asase, A., & Hodson, M. E. (2014). Mining in a changing climate: What scope for forestry-based legacies? Journal of Cleaner Production, 84(1), 430–438. https://doi.org/10.1016/j.jclepro.2013.11.025

Hu, Z., Fu, Y., Xiao, W., Zhao, Y., & Wei, T. (2015). Ecological restoration plan for abandoned underground coal mine site in Eastern China. International Journal of Mining, Reclamation and Environment, 29(4), 316–330. https://doi.org/10.1080/17480930.2014.1000645

Iskandar, I., Suryaningtyas, D. T., Baskoro, D. P. T., Budi, S. W., Gozali, I., Saridi, S., Masyhuri, M., & Dultz, S. (2022). The regulatory role of mine soil properties in the growth of revegetation plants in the post-mine landscape of East Kalimantan. Ecological Indicators, 139, 108877. https://doi.org/https://doi.org/10.1016/j.ecolind.2022.108877

Johnston, D., Potter, H., Jones, C., Rolley, S., Watson, I., & Pritchard, J. (2008). Abandoned mines and the water environment. In Science Report (Issue SC030136/SR41rSCHO0508BNZS-E-P). http://mwen.info/docs/imwa_2008/IMWA2008_128_Johnston.pdf

Juwarkar, A. A., & Jambhulkar, H. P. (2008). Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Bioresource Technology, 99(11), 4732–4741. https://doi.org/10.1016/j.biortech.2007.09.060

Kodir, A., Hartono, D. M., Haeruman, H., & Mansur, I. (2017). Integrated post mining landscape for sustainable land use: A case study in South Sumatera, Indonesia. Sustainable Environment Research, 27(4), 203–213. https://doi.org/https://doi.org/10.1016/j.serj.2017.03.003

Kubiszewski, I., Costanza, R., Anderson, S., & Sutton, P. (2017). The future value of ecosystem services: Global scenarios and national implications. Ecosystem Services, 26, 289–301. https://doi.org/10.1016/j.ecoser.2017.05.004

Kurniawan, R., Saputra, A. M. W., Wijayanto, A. W., & Caesarendra, W. (2022). Eco-environment vulnerability assessment using remote sensing approach in East Kalimantan, Indonesia. Remote Sensing Applications: Society and Environment, 27, 100791. https://doi.org/https://doi.org/10.1016/j.rsase.2022.100791

Li, G., Hu, Z., Li, P., Yuan, D., Feng, Z., Wang, W., & Fu, Y. (2022). Innovation for sustainable mining: Integrated planning of underground coal mining and mine reclamation. Journal of Cleaner Production, 351, 131522. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.131522

Li, H., Shao, H., Li, W., Bi, R., & Bai, Z. (2012). Improving Soil Enzyme Activities and Related Quality Properties of Reclaimed Soil by Applying Weathered Coal in Opencast-Mining Areas of the Chinese Loess Plateau. CLEAN – Soil, Air, Water, 40(3), 233–238. https://doi.org/https://doi.org/10.1002/clen.201000579

Li, Y., Chiu, Y., & Lin, T.-Y. (2019). Coal production efficiency and land destruction in China’s coal mining industry. Resources Policy, 63, 101449. https://doi.org/10.1016/j.resourpol.2019.101449

Li, Y., Chiu, Y., Liu, Y., Lin, T.-Y., & Chang, T.-H. (2020). The impact of the media and environmental pollution on the economy and health using a modified meta 2-stage EBM Malmquist model. INQUIRY: The Journal of Health Care Organization, Provision, and Financing, 57, 0046958020921070. https://journals.sagepub.com/doi/pdf/10.1177/0046958020921070

Li, Y., Chiu, Y., Wang, L., Zhou, Y., & Lin, T.-Y. (2020). Dynamic and network slack-based measure analysis of China’s regional energy and air pollution reduction efficiencies. Journal of Cleaner Production, 251, 119546. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.119546

Lin, B., & Zhu, J. (2017). Energy and carbon intensity in China during the urbanization and industrialization process: A panel VAR approach. Journal of Cleaner Production, 168(2017), 780–790. https://doi.org/10.1016/j.jclepro.2017.09.013

Maiti, S. K. (2013). Ecorestoration of the coalmine degraded lands. Ecorestoration of the Coalmine Degraded Lands. https://doi.org/10.1007/978-81-322-0851-8

O’Connor, D., Zheng, X., Hou, D., Shen, Z., Li, G., Miao, G., O’Connell, S., & Guo, M. (2019). Phytoremediation: Climate change resilience and sustainability assessment at a coastal brownfield redevelopment. Environment International, 130(April). https://doi.org/10.1016/j.envint.2019.104945

Oktorina, S. (2018). Kebijakan Reklamasi Dan Revegetasi Lahan Bekas Tambang (Studi Kasus Tambang Batubara Indonesia). Al-Ard: Jurnal Teknik Lingkungan, 4(1), 16–20. https://doi.org/10.29080/alard.v4i1.411

Patiung, O., Sinukaban, N., Tarigan, S. D., & Darusman, D. (2011). Pengaruh Umur Reklamasi Lahan Bekas Tambang Batubara Terhadap Fungsi Hidrologis. Hidrolitan, 2(2), 60–73.

Putra, G., & Maulud, A. R. (2020). Peramalan Kebutuhan Batubara Menggunakan Metode Single Exponential Smoothing di PT . Solusi Bangun Andalas. Jurnal Optimalisasi, 6, 131–141. https://core.ac.uk/download/pdf/336875966.pdf

Resosudarmo, B. P., Resosudarmo, I. A. P., Sarosa, W., & Subiman, N. L. (2009). Socioeconomic conflicts in Indonesia’s mining industry. Exploiting Natural Resources: Growth, Instability, and Conflict in the Middle East and Asia, Washington, DC: The Henry L. Stimson Center, 33–48. https://www.jstor.org/stable/pdf/resrep10917.8.pdf

Sannigrahi, S., Chakraborti, S., Joshi, P. K., Keesstra, S., Sen, S., Paul, S. K., Kreuter, U., Sutton, P. C., Jha, S., & Dang, K. B. (2019). Ecosystem service value assessment of a natural reserve region for strengthening protection and conservation. Journal of Environmental Management, 244(November 2018), 208–227. https://doi.org/10.1016/j.jenvman.2019.04.095

Shao, Y., Xu, Q., & Wei, X. (2023). Progress of Mine Land Reclamation and Ecological Restoration Research Based on Bibliometric Analysis. Sustainability (Switzerland), 15(13). https://doi.org/10.3390/su151310458

Sheoran, V., Sheoran, A. S., & Poonia, P. (2010). Soil reclamation of abandoned mine land by revegetation: a review. International Journal of Soil, Sediment and Water, 3(2), 13. https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1107&context=intljssw

Shrestha, R. K., & Lal, R. (2010). Carbon and nitrogen pools in reclaimed land under forest and pasture ecosystems in Ohio, USA. Geoderma, 157(3), 196–205. https://doi.org/https://doi.org/10.1016/j.geoderma.2010.04.013

Sinadia, H. (2020). Outlook Industri Pertambangan Batubara Nasional ditengah Transisi Energi. 1–27.

Taheri, W. I., & Bever, J. D. (2010). Adaptation of plants and arbuscular mycorrhizal fungi to coal tailings in Indiana. Applied Soil Ecology, 45(3), 138–143. https://doi.org/https://doi.org/10.1016/j.apsoil.2010.03.004

Tawaraya, K., & Turjaman, M. (2014). Use of arbuscular mycorrhizal fungi for reforestation of degraded tropical forests. In Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration (pp. 357–373). Springer. https://link.springer.com/chapter/10.1007/978-3-662-45370-4_22

Toumbourou, T., Muhdar, M., Werner, T., & Bebbington, A. (2020). Political ecologies of the post-mining landscape: Activism, resistance, and legal struggles over Kalimantan’s coal mines. Energy Research and Social Science, 65(September 2019), 101476. https://doi.org/10.1016/j.erss.2020.101476

Tripathi, N., Singh, R. S., & Hills, C. D. (2016). Soil carbon development in rejuvenated Indian coal mine spoil. Ecological Engineering, 90, 482–490. https://doi.org/10.1016/J.ECOLENG.2016.01.019

Verstegen, J. A., van der Laan, C., Dekker, S. C., Faaij, A. P. C., & Santos, M. J. (2019). Recent and projected impacts of land use and land cover changes on carbon stocks and biodiversity in East Kalimantan, Indonesia. Ecological Indicators, 103, 563–575. https://doi.org/https://doi.org/10.1016/j.ecolind.2019.04.053

Wu, Y. (2019). Coal Resources Distribution and Its Influence on Industrial Development and Underground Water in UK. Journal of Coastal Research, 93(sp1), 97–101. https://doi.org/10.2112/SI93-014.1

Wulandari, D., Saridi, Cheng, W., & Tawaraya, K. (2016). Arbuscular mycorrhizal fungal inoculation improves Albizia saman and Paraserianthes falcataria growth in post-opencast coal mine field in East Kalimantan, Indonesia. Forest Ecology and Management, 376, 67–73. https://doi.org/https://doi.org/10.1016/j.foreco.2016.06.008

Yuan, M., Ouyang, J., Zheng, S., Tian, Y., Sun, R., Bao, R., Li, T., Yu, T., Li, S., Wu, D., Liu, Y., Xu, C., & Zhu, Y. (2022). Research on Ecological Effect Assessment Method of Ecological Restoration of Open-Pit Coal Mines in Alpine Regions. International Journal of Environmental Research and Public Health, 19(13). https://doi.org/10.3390/ijerph19137682

Zhang, B. H., & Xu, Y. T. (2012). Analyzing ecological environmental effect of coal mine closure. Applied Mechanics and Materials, 209, 1183–1189. https://www.scientific.net/AMM.209-211.1183

Zhang, M., Wang, J., Zhang, Y., & Wang, J. (2023). Ecological response of land use change in a large opencast coal mine area of China. Resources Policy, 82, 103551. https://doi.org/https://doi.org/10.1016/j.resourpol.2023.103551

Zhou, W., Yang, K., Bai, Z., Cheng, H., & Liu, F. (2017). The development of topsoil properties under different reclaimed land uses in the Pingshuo opencast coalmine of Loess Plateau of China. Ecological Engineering, 100, 237–245. https://doi.org/https://doi.org/10.1016/j.ecoleng.2016.12.028

Downloads

Published

2024-02-29

Issue

Section

Articles

Citation Check