Copper foam modified electrodes for CO₂ electroreduction: A study on deposition potential effect and flow cell performance
DOI:
https://doi.org/10.61511/eam.v3i2.2025.2649Keywords:
carbon dioxide, Cu foam, Cu electrode, flow cellAbstract
Background: The development of effective electrochemical conversion technologies is imperative due to the rising global CO2 emissions. A promising platform for CO2 reduction to formate is copper electrode, which can stabilize the carbon dioxide radical that is essential for CO2 conversion. Methods: In this work, Cu foam was electrodeposited in situ on a copper plate with sodium citrate acting as a capping agent (CuF@Cu), with variation of potential deposition were 3V and 5V. Findings: The foam structure of Cu in Cu electrode was confirmed with SEM and XRD measurements for both potential deposition variations. Furthermore, CO2 electroreduction was carried out in a flow cell under ideal conditions, which included aeration for 20 minutes, a flow rate of 75 mL min⁻¹, and an applied potential of −0.33 V vs. Ag/AgCl. For formic acid conversion, the Faradaic efficiency rose from 14.18% (Cu bare) to 26.73% (CuF@Cu 3V) which an 88.7% improvement over bare copper. Conclusion: The enhanced performance is attributed to the increased surface area and three-dimensional foam structure, which augments active sites for CO₂ activation. This work demonstrates that simple electrodeposition of copper foam is an effective strategy for improving electrochemical CO₂ reduction efficiency. Novelty/Originality of this article: These findings demonstrate that CuF@Cu makes using this straightforward electrodeposition technique a viable option for CO2 to formate conversion.
References
Besharati, F., & Paydar, M. H. (2023). Fabrication of Copper Open Cell Foam by Electrochemical Deposition Method and Investigation on the Effect of Current Intensity and Plating Solution on the Created Microstructure. 10(1), 4–12.
Cao, V. Du, Tran, N. Q., & Nguyen, T. P. P. (2015). Synergistic effect of citrate dispersant and capping polymers on controlling size growth of ultrafine copper nanoparticles. Journal of Experimental Nanoscience, 10(8), 576–587. https://doi.org/10.1080/17458080.2013.848298
Commission, E. (2025). JRC Science for Policy Report Fossil CO2 & GHG emissions of all world countries (Issue October). https://doi.org/10.2760/5917997
Diksy, Y., Rahmawati, I., Jiwanti, P. K., & Ivandini, T. A. (2020). Nano-Cu Modified Cu and Nano-Cu Modified Graphite Electrodes for Chemical Oxygen Demand Sensors. Analytical Sciences, 36(11), 1323–1327. https://doi.org/10.2116/analsci.20P069
Duangsa, K., Tangtrakarn, A., Mongkolkachit, C., Aungkavattana, P., & Moolsarn, K. (2021). The Effect of Tartaric Acid and Citric Acid as a Complexing Agent on Defect Structure and Conductivity of Copper Samarium Co-Doped Ceria Prepared by a Sol-Gel Auto-Combustion Method. Advances in Materials Science and Engineering, 2021. https://doi.org/10.1155/2021/5592437
Elgazzar, A., Zhu, P., Chen, F.-Y., Hao, S., Wi, T.-U., Qiu, C., Okatenko, V., & Wang, H. (2025). Electrochemical CO2 Reduction to Formic Acid with High Carbon Efficiency. ACS Energy Letters, 10(1), 450–458. https://doi.org/10.1021/acsenergylett.4c02773
Fernández-Caso, K., Díaz-Sainz, G., Alvarez-Guerra, M., & Irabien, A. (2023). Electroreduction of CO2: Advances in the Continuous Production of Formic Acid and Formate. ACS Energy Letters, 8(4), 1992–2024. https://doi.org/10.1021/acsenergylett.3c00489
Girichandran, N., Saedy, S., & Kortlever, R. (2024). Electrochemical CO2 reduction on a copper foam electrode at elevated pressures. Chemical Engineering Journal, 487, 150478. https://doi.org/https://doi.org/10.1016/j.cej.2024.150478
Hussain, M. J., Ghanem, M. A., Reddy, Y. V. M., Madhavi, G., Joo, S. W., & Reddy, G. R. (2025). Dumbbell-shaped nanorod assembly of a NiO/CuO composite for high-performance redox-active battery-type supercapacitor electrodes. CrystEngComm, 27(25), 4360–4377. https://doi.org/10.1039/D5CE00055F
Jiang, Z., Clavaguéra, C., Hu, C., Denisov, S. A., Shen, S., Hu, F., Ma, J., & Mostafavi, M. (2023). Direct time-resolved observation of surface-bound carbon dioxide radical anions on metallic nanocatalysts. Nature Communications, 14(1), 7116. https://doi.org/10.1038/s41467-023-42936-6
Jiwanti, P. K., Aritonang, R. P., Abdullah, I., Einaga, Y., & Ivandini, T. A. (2019). Copper-nickel-modified Boron-doped Diamond Electrode for CO2 Electrochemical Reduction Application: A Preliminary Study. Makara Journal of Science, 204–209. https://doi.org/10.7454/mss.v23i4.11512
Jiwanti, P. K., Ichzan, A. M., Dewandaru, R. K. P., Atriardi, S. R., Einaga, Y., & Ivandini, T. A. (2020). Improving the CO2 electrochemical reduction to formic acid using iridium-oxide-modified boron-doped diamond electrodes. Diamond and Related Materials, 106, 107874. https://doi.org/10.1016/j.diamond.2020.107874
Kang, X., Li, L., Sheveleva, A., Han, X., Li, J., Liu, L., Tuna, F., McInnes, E. J. L., Han, B., Yang, S., & Schröder, M. (2020). Electro-reduction of carbon dioxide at low over-potential at a metal–organic framework decorated cathode. Nature Communications, 11(1), 5464. https://doi.org/10.1038/s41467-020-19236-4
Khalil, M., Gunlazuardi, J., Ivandini, T. A., & Umar, A. (2019). Photocatalytic conversion of CO2 using earth-abundant catalysts: A review on mechanism and catalytic performance. Renewable and Sustainable Energy Reviews, 113, 109246. https://doi.org/10.1016/j.rser.2019.109246
Khan, R. R. M., Saleem, R., Batool, S. S., Rasheed, S., Saeed, Z., Pervaiz, M., Younas, U., Summer, M., & Liaqat, M. (2025). Electrochemical reduction of CO2 to liquid products: Factors influencing production and selectivity. International Journal of Hydrogen Energy, 128, 800–832. https://doi.org/https://doi.org/10.1016/j.ijhydene.2025.04.077
Kim, J.-H., Kim, R.-H., & Kwon, H.-S. (2008). Preparation of copper foam with 3-dimensionally interconnected spherical pore network by electrodeposition. Electrochemistry Communications, 10(8), 1148–1151. https://doi.org/https://doi.org/10.1016/j.elecom.2008.05.035
Kottakkat, T., Klingan, K., Jiang, S., Jovanov, Z. P., Davies, V. H., El-Nagar, G. A. M., Dau, H., & Roth, C. (2019). Electrodeposited AgCu Foam Catalysts for Enhanced Reduction of CO2 to CO. ACS Applied Materials & Interfaces, 11(16), 14734–14744. https://doi.org/10.1021/acsami.8b22071
Levin, E. E., Morozov, D. A., Frolov, V. V, Arkharova, N. A., Khmelenin, D. N., Antipov, E. V, & Nikitina, V. A. (2023). Roughness Factors of Electrodeposited Nanostructured Copper Foams. Nanomaterials (Basel, Switzerland), 13(23). https://doi.org/10.3390/nano13233011
Li, R., Liu, X., Liu, W., Li, Z., Chan, K. C., & Lu, Z. (2022). Design of Hierarchical Porosity Via Manipulating Chemical and Microstructural Complexities in High-Entropy Alloys for Efficient Water Electrolysis. Advanced Science, 9(12), 1–10. https://doi.org/10.1002/advs.202105808
Long, C., Liu, X., Wan, K., Jiang, Y., An, P., Yang, C., Wu, G., Wang, W., Guo, J., Li, L., Pang, K., Li, Q., Cui, C., Liu, S., Tan, T., & Tang, Z. (2025). Regulating reconstruction of oxide-derived Cu for electrochemical CO2 reduction toward n-propanol. Science Advances, 9(43), eadi6119. https://doi.org/10.1126/sciadv.adi6119
Maniam, K. K., Maniam, M., Diaz, L. A., Kukreja, H. K., Papadopoulos, A. I., Kumar, V., Seferlis, P., & Paul, S. (2023). Progress in Electrodeposited Copper Catalysts for CO2 Conversion to Valuable Products. Processes, 11(4). https://doi.org/10.3390/pr11041148
Nitopi, S., Bertheussen, E., Scott, S. B., Liu, X., Engstfeld, A. K., Horch, S., Seger, B., Stephens, I. E. L., Chan, K., Hahn, C., Nørskov, J. K., Jaramillo, T. F., & Chorkendorff, I. (2019). Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chemical Reviews, 119(12), 7610–7672. https://doi.org/10.1021/acs.chemrev.8b00705
Raciti, D., Wang, Y., Park, J. H., & Wang, C. (2018). Three-Dimensional Hierarchical Copper-Based Nanostructures as Advanced Electrocatalysts for CO2 Reduction. ACS Applied Energy Materials, 1(6), 2392–2398. https://doi.org/10.1021/acsaem.8b00356
Riyanto, H. G., & Sanjaya, A. R. (2024). Preliminary Molecular Study of Chloramphenicol Anchoring on Laccase Enzyme from Trametes hirsuta. Makara Journal of Science, 28(3), 194–201. https://doi.org/10.7454/mss.v28i3.2428
Riyanto, H. G., Sylvia, D., Riyanto, H. G., & Sylvia, D. (2025). Microplastic Degradation using Laccase Enzyme from Trametes hirsuta : In the Silico Study Microplastic Degradation using Laccase Enzyme from Trametes hirsuta : In the Silico Study. 29(4). https://doi.org/10.7454/mss.v29i4.3072
Saprudin, M. H., Jiwanti, P. K., Saprudin, D., Sanjaya, A. R., Putri, Y. M. T. A., Einaga, Y., & Ivandini, T. A. (2023). Electrochemical reduction of carbon dioxide to acetic acid on a Cu–Au modified boron-doped diamond electrode with a flow-cell system. RSC Advances, 13(32), 22061–22069. https://doi.org/10.1039/D3RA03836J
Shin, H.-C., & Liu, M. (2004). Copper Foam Structures with Highly Porous Nanostructured Walls. Chemistry of Materials, 16(25), 5460–5464. https://doi.org/10.1021/cm048887b
S.Vidhya, A. L. R. (2017). Ournal of. Asian Journal of Chemistry, 29(8), 1757–1760.
Syauqi, M. I., Cahyani, A. T., Putri, Y. M. T. A., & Jiwanti, P. K. (2023). Electroreduction of carbon dioxide (CO2) with flow cell system using tin-modified copper foam electrode. Environmental and Materials, 1(2), 74–86. https://doi.org/10.61511/eam.v1i2.2023.363
Wang, J., & Ma, Y. (2023). Copper and nickel-based oxides delicately tailored via galvanic reaction as electrocatalyst for solid-state direct urea fuel cell. International Journal of Hydrogen Energy, 48(74), 28882–28890. https://doi.org/10.1016/j.ijhydene.2023.04.057
Wang, M., Liu, S., Qian, T., Liu, J., Zhou, J., Ji, H., Xiong, J., Zhong, J., & Yan, C. (2019). Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nature Communications, 10(1), 341. https://doi.org/10.1038/s41467-018-08120-x
Xun, X., Liu, H., Su, Y., Zhang, J., Niu, J., Zhao, H., Zhao, G., Liu, Y., & Li, G. (2019). One-pot synthesis Ni-Cu sulfide on Ni foam with novel three-dimensional prisms/spheres hierarchical structure for high-performance supercapacitors. Journal of Solid State Chemistry, 275, 95–102. https://doi.org/https://doi.org/10.1016/j.jssc.2019.04.012
Zhang, G., Yang, G., & Ma, J. S. (2006). Versatile Framework Solids Constructed from Divalent Transition Metals and Citric Acid: Syntheses, Crystal Structures, and Thermal Behaviors. Crystal Growth & Design, 6(2), 375–381. https://doi.org/10.1021/cg0503245
Zhang, W., Jin, Z., & Chen, Z. (2022). Rational-Designed Principles for Electrochemical and Photoelectrochemical Upgrading of CO2 to Value-Added Chemicals. Advanced Science, 9(9), 1–30. https://doi.org/10.1002/advs.202105204
Zhu, Q., Sun, X., Yang, D., Ma, J., Kang, X., Zheng, L., Zhang, J., Wu, Z., & Han, B. (2019). Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nature Communications, 10(1), 3851. https://doi.org/10.1038/s41467-019-11599-7
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Hanzhola Gusman Riyanto, Lewita Pasaribu, Fathur Rachman, Octaviany Magdalena, Afiten Rahmin Sanjaya

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Direktorat Jenderal Penguatan Riset dan Pengembangan
Grant numbers NKB-318/UN2.RST/HKP.05.00/2021














