Copper foam modified electrodes for CO₂ electroreduction: A study on deposition potential effect and flow cell performance

Authors

  • Hanzhola Gusman Riyanto Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok, West Java 16424, Indonesia, Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Pamulang, Pamulang, Banten 15417, Indonesia
  • Lewita Pasaribu Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok, West Java 16424, Indonesia, 3 Research Center for Catalysis, Indonesian Institute of Sciences, Kawasan PUSPIPTEK, Serpong, Tangerang 15314, Indonesia
  • Fathur Rachman Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok, West Java 16424, Indonesia
  • Octaviany Magdalena Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok, West Java 16424, Indonesia
  • Afiten Rahmin Sanjaya Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok, West Java 16424, Indonesia

DOI:

https://doi.org/10.61511/eam.v3i2.2025.2649

Keywords:

carbon dioxide, Cu foam, Cu electrode, flow cell

Abstract

Background: The development of effective electrochemical conversion technologies is imperative due to the rising global CO2 emissions. A promising platform for CO2 reduction to formate is copper electrode, which can stabilize the carbon dioxide radical that is essential for CO2 conversion. Methods: In this work, Cu foam was electrodeposited in situ on a copper plate with sodium citrate acting as a capping agent (CuF@Cu), with variation of potential deposition were 3V and 5V. Findings: The foam structure of Cu in Cu electrode was confirmed with SEM and XRD measurements for both potential deposition variations. Furthermore, CO2 electroreduction was carried out in a flow cell under ideal conditions, which included aeration for 20 minutes, a flow rate of 75 mL min⁻¹, and an applied potential of −0.33 V vs. Ag/AgCl. For formic acid conversion, the Faradaic efficiency rose from 14.18% (Cu bare) to 26.73% (CuF@Cu 3V) which an 88.7% improvement over bare copper. Conclusion: The enhanced performance is attributed to the increased surface area and three-dimensional foam structure, which augments active sites for CO₂ activation. This work demonstrates that simple electrodeposition of copper foam is an effective strategy for improving electrochemical CO₂ reduction efficiency. Novelty/Originality of this article: These findings demonstrate that CuF@Cu makes using this straightforward electrodeposition technique a viable option for CO2 to formate conversion.

References

Besharati, F., & Paydar, M. H. (2023). Fabrication of Copper Open Cell Foam by Electrochemical Deposition Method and Investigation on the Effect of Current Intensity and Plating Solution on the Created Microstructure. 10(1), 4–12.

Cao, V. Du, Tran, N. Q., & Nguyen, T. P. P. (2015). Synergistic effect of citrate dispersant and capping polymers on controlling size growth of ultrafine copper nanoparticles. Journal of Experimental Nanoscience, 10(8), 576–587. https://doi.org/10.1080/17458080.2013.848298

Commission, E. (2025). JRC Science for Policy Report Fossil CO2 & GHG emissions of all world countries (Issue October). https://doi.org/10.2760/5917997

Diksy, Y., Rahmawati, I., Jiwanti, P. K., & Ivandini, T. A. (2020). Nano-Cu Modified Cu and Nano-Cu Modified Graphite Electrodes for Chemical Oxygen Demand Sensors. Analytical Sciences, 36(11), 1323–1327. https://doi.org/10.2116/analsci.20P069

Duangsa, K., Tangtrakarn, A., Mongkolkachit, C., Aungkavattana, P., & Moolsarn, K. (2021). The Effect of Tartaric Acid and Citric Acid as a Complexing Agent on Defect Structure and Conductivity of Copper Samarium Co-Doped Ceria Prepared by a Sol-Gel Auto-Combustion Method. Advances in Materials Science and Engineering, 2021. https://doi.org/10.1155/2021/5592437

Elgazzar, A., Zhu, P., Chen, F.-Y., Hao, S., Wi, T.-U., Qiu, C., Okatenko, V., & Wang, H. (2025). Electrochemical CO2 Reduction to Formic Acid with High Carbon Efficiency. ACS Energy Letters, 10(1), 450–458. https://doi.org/10.1021/acsenergylett.4c02773

Fernández-Caso, K., Díaz-Sainz, G., Alvarez-Guerra, M., & Irabien, A. (2023). Electroreduction of CO2: Advances in the Continuous Production of Formic Acid and Formate. ACS Energy Letters, 8(4), 1992–2024. https://doi.org/10.1021/acsenergylett.3c00489

Girichandran, N., Saedy, S., & Kortlever, R. (2024). Electrochemical CO2 reduction on a copper foam electrode at elevated pressures. Chemical Engineering Journal, 487, 150478. https://doi.org/https://doi.org/10.1016/j.cej.2024.150478

Hussain, M. J., Ghanem, M. A., Reddy, Y. V. M., Madhavi, G., Joo, S. W., & Reddy, G. R. (2025). Dumbbell-shaped nanorod assembly of a NiO/CuO composite for high-performance redox-active battery-type supercapacitor electrodes. CrystEngComm, 27(25), 4360–4377. https://doi.org/10.1039/D5CE00055F

Jiang, Z., Clavaguéra, C., Hu, C., Denisov, S. A., Shen, S., Hu, F., Ma, J., & Mostafavi, M. (2023). Direct time-resolved observation of surface-bound carbon dioxide radical anions on metallic nanocatalysts. Nature Communications, 14(1), 7116. https://doi.org/10.1038/s41467-023-42936-6

Jiwanti, P. K., Aritonang, R. P., Abdullah, I., Einaga, Y., & Ivandini, T. A. (2019). Copper-nickel-modified Boron-doped Diamond Electrode for CO2 Electrochemical Reduction Application: A Preliminary Study. Makara Journal of Science, 204–209. https://doi.org/10.7454/mss.v23i4.11512

Jiwanti, P. K., Ichzan, A. M., Dewandaru, R. K. P., Atriardi, S. R., Einaga, Y., & Ivandini, T. A. (2020). Improving the CO2 electrochemical reduction to formic acid using iridium-oxide-modified boron-doped diamond electrodes. Diamond and Related Materials, 106, 107874. https://doi.org/10.1016/j.diamond.2020.107874

Kang, X., Li, L., Sheveleva, A., Han, X., Li, J., Liu, L., Tuna, F., McInnes, E. J. L., Han, B., Yang, S., & Schröder, M. (2020). Electro-reduction of carbon dioxide at low over-potential at a metal–organic framework decorated cathode. Nature Communications, 11(1), 5464. https://doi.org/10.1038/s41467-020-19236-4

Khalil, M., Gunlazuardi, J., Ivandini, T. A., & Umar, A. (2019). Photocatalytic conversion of CO2 using earth-abundant catalysts: A review on mechanism and catalytic performance. Renewable and Sustainable Energy Reviews, 113, 109246. https://doi.org/10.1016/j.rser.2019.109246

Khan, R. R. M., Saleem, R., Batool, S. S., Rasheed, S., Saeed, Z., Pervaiz, M., Younas, U., Summer, M., & Liaqat, M. (2025). Electrochemical reduction of CO2 to liquid products: Factors influencing production and selectivity. International Journal of Hydrogen Energy, 128, 800–832. https://doi.org/https://doi.org/10.1016/j.ijhydene.2025.04.077

Kim, J.-H., Kim, R.-H., & Kwon, H.-S. (2008). Preparation of copper foam with 3-dimensionally interconnected spherical pore network by electrodeposition. Electrochemistry Communications, 10(8), 1148–1151. https://doi.org/https://doi.org/10.1016/j.elecom.2008.05.035

Kottakkat, T., Klingan, K., Jiang, S., Jovanov, Z. P., Davies, V. H., El-Nagar, G. A. M., Dau, H., & Roth, C. (2019). Electrodeposited AgCu Foam Catalysts for Enhanced Reduction of CO2 to CO. ACS Applied Materials & Interfaces, 11(16), 14734–14744. https://doi.org/10.1021/acsami.8b22071

Levin, E. E., Morozov, D. A., Frolov, V. V, Arkharova, N. A., Khmelenin, D. N., Antipov, E. V, & Nikitina, V. A. (2023). Roughness Factors of Electrodeposited Nanostructured Copper Foams. Nanomaterials (Basel, Switzerland), 13(23). https://doi.org/10.3390/nano13233011

Li, R., Liu, X., Liu, W., Li, Z., Chan, K. C., & Lu, Z. (2022). Design of Hierarchical Porosity Via Manipulating Chemical and Microstructural Complexities in High-Entropy Alloys for Efficient Water Electrolysis. Advanced Science, 9(12), 1–10. https://doi.org/10.1002/advs.202105808

Long, C., Liu, X., Wan, K., Jiang, Y., An, P., Yang, C., Wu, G., Wang, W., Guo, J., Li, L., Pang, K., Li, Q., Cui, C., Liu, S., Tan, T., & Tang, Z. (2025). Regulating reconstruction of oxide-derived Cu for electrochemical CO2 reduction toward n-propanol. Science Advances, 9(43), eadi6119. https://doi.org/10.1126/sciadv.adi6119

Maniam, K. K., Maniam, M., Diaz, L. A., Kukreja, H. K., Papadopoulos, A. I., Kumar, V., Seferlis, P., & Paul, S. (2023). Progress in Electrodeposited Copper Catalysts for CO2 Conversion to Valuable Products. Processes, 11(4). https://doi.org/10.3390/pr11041148

Nitopi, S., Bertheussen, E., Scott, S. B., Liu, X., Engstfeld, A. K., Horch, S., Seger, B., Stephens, I. E. L., Chan, K., Hahn, C., Nørskov, J. K., Jaramillo, T. F., & Chorkendorff, I. (2019). Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chemical Reviews, 119(12), 7610–7672. https://doi.org/10.1021/acs.chemrev.8b00705

Raciti, D., Wang, Y., Park, J. H., & Wang, C. (2018). Three-Dimensional Hierarchical Copper-Based Nanostructures as Advanced Electrocatalysts for CO2 Reduction. ACS Applied Energy Materials, 1(6), 2392–2398. https://doi.org/10.1021/acsaem.8b00356

Riyanto, H. G., & Sanjaya, A. R. (2024). Preliminary Molecular Study of Chloramphenicol Anchoring on Laccase Enzyme from Trametes hirsuta. Makara Journal of Science, 28(3), 194–201. https://doi.org/10.7454/mss.v28i3.2428

Riyanto, H. G., Sylvia, D., Riyanto, H. G., & Sylvia, D. (2025). Microplastic Degradation using Laccase Enzyme from Trametes hirsuta : In the Silico Study Microplastic Degradation using Laccase Enzyme from Trametes hirsuta : In the Silico Study. 29(4). https://doi.org/10.7454/mss.v29i4.3072

Saprudin, M. H., Jiwanti, P. K., Saprudin, D., Sanjaya, A. R., Putri, Y. M. T. A., Einaga, Y., & Ivandini, T. A. (2023). Electrochemical reduction of carbon dioxide to acetic acid on a Cu–Au modified boron-doped diamond electrode with a flow-cell system. RSC Advances, 13(32), 22061–22069. https://doi.org/10.1039/D3RA03836J

Shin, H.-C., & Liu, M. (2004). Copper Foam Structures with Highly Porous Nanostructured Walls. Chemistry of Materials, 16(25), 5460–5464. https://doi.org/10.1021/cm048887b

S.Vidhya, A. L. R. (2017). Ournal of. Asian Journal of Chemistry, 29(8), 1757–1760.

Syauqi, M. I., Cahyani, A. T., Putri, Y. M. T. A., & Jiwanti, P. K. (2023). Electroreduction of carbon dioxide (CO2) with flow cell system using tin-modified copper foam electrode. Environmental and Materials, 1(2), 74–86. https://doi.org/10.61511/eam.v1i2.2023.363

Wang, J., & Ma, Y. (2023). Copper and nickel-based oxides delicately tailored via galvanic reaction as electrocatalyst for solid-state direct urea fuel cell. International Journal of Hydrogen Energy, 48(74), 28882–28890. https://doi.org/10.1016/j.ijhydene.2023.04.057

Wang, M., Liu, S., Qian, T., Liu, J., Zhou, J., Ji, H., Xiong, J., Zhong, J., & Yan, C. (2019). Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nature Communications, 10(1), 341. https://doi.org/10.1038/s41467-018-08120-x

Xun, X., Liu, H., Su, Y., Zhang, J., Niu, J., Zhao, H., Zhao, G., Liu, Y., & Li, G. (2019). One-pot synthesis Ni-Cu sulfide on Ni foam with novel three-dimensional prisms/spheres hierarchical structure for high-performance supercapacitors. Journal of Solid State Chemistry, 275, 95–102. https://doi.org/https://doi.org/10.1016/j.jssc.2019.04.012

Zhang, G., Yang, G., & Ma, J. S. (2006). Versatile Framework Solids Constructed from Divalent Transition Metals and Citric Acid: Syntheses, Crystal Structures, and Thermal Behaviors. Crystal Growth & Design, 6(2), 375–381. https://doi.org/10.1021/cg0503245

Zhang, W., Jin, Z., & Chen, Z. (2022). Rational-Designed Principles for Electrochemical and Photoelectrochemical Upgrading of CO2 to Value-Added Chemicals. Advanced Science, 9(9), 1–30. https://doi.org/10.1002/advs.202105204

Zhu, Q., Sun, X., Yang, D., Ma, J., Kang, X., Zheng, L., Zhang, J., Wu, Z., & Han, B. (2019). Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nature Communications, 10(1), 3851. https://doi.org/10.1038/s41467-019-11599-7

Published

2025-12-31

How to Cite

Riyanto, H. G., Pasaribu, L., Rachman, F., Magdalena, O., & Sanjaya, A. R. (2025). Copper foam modified electrodes for CO₂ electroreduction: A study on deposition potential effect and flow cell performance. Environmental and Materials, 3(2). https://doi.org/10.61511/eam.v3i2.2025.2649

Issue

Section

Articles

Citation Check

Funding data