One-pot catalytic conversion of glucose to 2,5-furandicarboxylic acid over NiO-modified ZSM-5 zeolites: Effects of reaction temperature and solvent ratio

Authors

  • Arnia Putri Pratama Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia; Solid Inorganic Framework Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia
  • Andita Junia Mulyadi Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia; Solid Inorganic Framework Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia
  • Rahmat Wibowo Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia
  • Yuni Krisyuningsih Krisnandi Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia; Solid Inorganic Framework Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia

DOI:

https://doi.org/10.61511/eam.v3i2.2025.2642

Keywords:

NiO, ZSM-5, NiO/ZSM-5, glucose, FDCA

Abstract

Background: 2,5-Furandicarboxylic acid (FDCA) has gained increasing attention as a key bio-based intermediate for the production of polyethylene furanoate (PEF) and other sustainable polyesters, offering a viable alternative to fossil-derived monomers. Although FDCA is conventionally produced via oxidation of 5-hydroxymethylfurfural (HMF), direct one-pot conversion of glucose remains challenging due to the requirement for integrated catalytic functions and the strong influence of reaction conditions. Hierarchical zeolites modified with transition-metal oxides are promising for one-pot glucose-to-FDCA conversion; however, the effects of reaction temperature and solvent composition have not been systematically evaluated and are examined here using hierarchical ZSM-5, NiO-modified ZSM-5, and NiO catalysts. Methods: Hierarchical ZSM-5 was synthesized via a dual-template method and modified with NiO through an impregnation–spray technique to introduce redox-active sites. The catalysts were characterized using X-ray diffraction, Fourier-transform infrared spectroscopy, nitrogen physisorption, and Scanning Electron Microscope-Energy Dispersive X-Ray to establish correlations between structural, compositional, and textural properties and catalytic performance. Catalytic reactions were conducted at varying temperatures using a γ-valerolactone–water solvent system with different volume ratios. Findings: NiO-modified hierarchical ZSM-5 exhibited superior catalytic performance compared to the parent zeolite and NiO, achieving a maximum FDCA yield of 2.36% at 150 °C with an optimal γ-valerolactone–water ratio of 1:1. Higher FDCA yield over NiO-modified hierarchical ZSM-5 reflects the combined effects of hierarchical porosity, NiO species, reaction temperature, and solvent ratio. Conclusion: This study demonstrates that NiO-modified hierarchical ZSM-5 can promote one-pot glucose-to-FDCA conversion, with reaction temperature and solvent ratio identified as key parameters for performance optimization. Novelty/Originality of this article: This study provides a systematic assessment of the effects of reaction temperature and γ-valerolactone–water solvent ratio on FDCA formation over NiO-modified hierarchical ZSM-5 in a one-pot glucose conversion system, establishing catalyst and process design principles.

References

Al Ghatta, A., Wilton-Ely, J. D. E. T., & Hallett, J. P. (2021). From sugars to FDCA: a techno-economic assessment using a design concept based on solvent selection and carbon dioxide emissions. Green Chemistry, 23(4), 1716–1733. https://doi.org/10.1039/d0gc03991h

Albonetti, S., Pasini, T., Lolli, A., Blosi, M., Piccinini, M., Dimitratos, N., Lopez-Sanchez, J. A., Morgan, D. J., Carley, A. F., Hutchings, G. J., & Cavani, F. (2012). Selective oxidation of 5-hydroxymethyl-2-furfural over TiO 2-supported gold-copper catalysts prepared from preformed nanoparticles: Effect of Au/Cu ratio. Catalysis Today, 195(1), 120–126. https://doi.org/10.1016/j.cattod.2012.05.039

Almhofer, L., Bischof, R. H., Madera, M., & Paulik, C. (2023). Kinetic and mechanistic aspects of furfural degradation in biorefineries. The Canadian Journal of Chemical Engineering, 101(4), 2033–2049. https://doi.org/https://doi.org/10.1002/cjce.24593

Asghar, A., Iqbal, N., Aftab, L., Noor, T., Kariuki, B. M., Kidwell, L., & Easun, T. L. (2020). Ethylenediamine loading into a manganese-based metal-organic framework enhances water stability and carbon dioxide uptake of the framework. Royal Society Open Science, 7(3). https://doi.org/10.1098/rsos.191934

Bahari Molla Mahaleh, Y., Sadrnezhaad, S. K., & Hosseini, D. (2008). NiO nanoparticles synthesis by chemical precipitation and effect of applied surfactant on distribution of particle size. Journal of Nanomaterials, 2008(1), 4–7. https://doi.org/10.1155/2008/470595

Bosch, M., & Hazen, S. P. (2013). Lignocellulosic feedstocks: Research progress and challenges in optimizing biomass quality and yield. Frontiers in Plant Science, 4(NOV), 1–3. https://doi.org/10.3389/fpls.2013.00474

Bueno, A., Viar, N., Conway, M. B., Gandarias, I., Requies, J. M., & Sankar, M. (2026). Aerobic oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic acid over Au/Hydrotalcite catalyst − role of support and synthesis methodology on the activity and stability. Fuel, 403(April 2025), 136088. https://doi.org/10.1016/j.fuel.2025.136088

Carraher, J. M., Fleitman, C. N., & Tessonnier, J. P. (2015). Kinetic and mechanistic study of glucose isomerization using homogeneous organic brønsted base catalysts in water. ACS Catalysis, 5(6), 3162–3173. https://doi.org/10.1021/acscatal.5b00316

Che, Q., Yang, M., Wang, X., Yang, Q., Rose Williams, L., Yang, H., Zou, J., Zeng, K., Zhu, Y., Chen, Y., & Chen, H. (2019). Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis. Bioresource Technology, 278, 248–254. https://doi.org/https://doi.org/10.1016/j.biortech.2019.01.081

Chen, B., Abe, Y., Guo, H., & Lee Smith, R. (2024). Selective oxidation of 5-hydroxymethylfurfural over MnOx-CeO2 catalyst prepared with co-precipitation method. Fuel, 376(July), 132745. https://doi.org/10.1016/j.fuel.2024.132745

Chen, Y., Li, G., Yang, F., & Zhang, S. (2011). Mn/ZSM-5 participation in the degradation of cellulose under phosphoric acid media. Polymer Degradation and Stability, 96(5), 863–869. https://doi.org/10.1016/j.polymdegradstab.2011.02.007

Chioatto, E., Mancinelli, S., Mazzanti, M., & Onofrio, F. (2024). The Chemical sector in transition: Technological developments and green skills towards circularity and decarbonisation. Current Opinion in Green and Sustainable Chemistry, 50, 100976. https://doi.org/10.1016/j.cogsc.2024.100976

Davis, S. E., Houk, L. R., Tamargo, E. C., Datye, A. K., & Davis, R. J. (2011). Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Catalysis Today, 160(1), 55–60. https://doi.org/10.1016/j.cattod.2010.06.004

de Jong, E., Visser, H. A., Dias, A. S., Harvey, C., & Gruter, G. J. M. (2022). The Road to Bring FDCA and PEF to the Market. Polymers, 14(5), 1–32. https://doi.org/10.3390/polym14050943

Deekala, V., Yazala, J. P., Sapavath, M., Kowthalam, A., & Rudraraju, R. (2020). Synthesis and Characterization of Nickel Oxide Nanoparticles Synthesized via Chemical Precipitation Method. IOSR Journal of Applied Chemistry (IOSR-JAC), 2263(10), 38–44. https://doi.org/10.1063/5.0016855

Deshan, A. D. K., Atanda, L., Moghaddam, L., Rackemann, D. W., Beltramini, J., & Doherty, W. O. S. (2020). Heterogeneous Catalytic Conversion of Sugars Into 2,5-Furandicarboxylic Acid. Frontiers in Chemistry, 8(July), 1–23. https://doi.org/10.3389/fchem.2020.00659

do Nascimento, M. A., Haber, B., Gomez, M. R. B. P., Leao, R. A. C., Pietrowski, M., Zielinski, M., de Souza, R. O. M. A., Wojcieszak, R., & Itabaiana, I. (2024). Optimization of 5-hydroxymethylfurfural oxidation via photo-enzymatic cascade process. Green Chemistry, 26(14), 8211–8219. https://doi.org/10.1039/d4gc00673a

Gong, W., Zheng, K., & Ji, P. (2017). Platinum deposited on cerium coordination polymer for catalytic oxidation of hydroxymethylfurfural producing 2,5-furandicarboxylic acid. RSC Advances, 7(55), 34776–34782. https://doi.org/10.1039/c7ra05427k

Hayashi, E., Yamaguchi, Y., Kamata, K., Tsunoda, N., Kumagai, Y., Oba, F., & Hara, M. (2019). Effect of MnO2 Crystal Structure on Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Journal of the American Chemical Society, 141(2), 890–900. https://doi.org/10.1021/jacs.8b09917

Herlina, I., Krisnandi, Y. K., & Ridwan, M. (2024). Oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over CuO and NiO modified natural sourced hierarchical ZSM-5. South African Journal of Chemical Engineering, 47(December 2022), 75–82. https://doi.org/10.1016/j.sajce.2023.10.011

Herlina, I., Krisnandi, Y. K., & Ridwan, M. (2025). Production of 2,5-furandicarboxylic acid (FDCA) from delignified rice husk waste over Cu and Ni metal-organic framework catalyst. Case Studies in Chemical and Environmental Engineering, 11(March), 101233. https://doi.org/10.1016/j.cscee.2025.101233

Jeong, H., Park, S., Ryu, G., Choi, J., Kim, J., & Choi, W. (2018). Catalytic conversion of hemicellulosic sugars derived from biomass to levulinic acid. Catalysis Communications, 117(April), 19–25. https://doi.org/10.1016/j.catcom.2018.04.016

Kim, H., Choi, J., & Won, W. (2020). Process synthesis and analysis of green plastic monomer production from cellulose. Journal of Cleaner Production, 277, 124072. https://doi.org/10.1016/j.jclepro.2020.124072

Kim, Y. H., Lee, K. H., Nam, C.-M., & Lee, J. S. (2012). Formation of Hierarchical Pore Structures in Zn/ZSM-5 to Improve the Catalyst Stability in the Aromatization of Branched Olefins. ChemCatChem, 4(8), 1143–1153. https://doi.org/https://doi.org/10.1002/cctc.201200007

Körner, P., Jung, D., & Kruse, A. (2019). Influence of the pH Value on the Hydrothermal Degradation of Fructose. ChemistryOpen, 8(8), 1121–1132. https://doi.org/10.1002/open.201900225

Kostyniuk, A., Key, D., & Mdleleni, M. (2020). 1-hexene isomerization over bimetallic M-Mo-ZSM-5 (M: Fe, Co, Ni) zeolite catalysts: Effects of transition metals addition on the catalytic performance. Journal of the Energy Institute, 93(2), 552–564. https://doi.org/https://doi.org/10.1016/j.joei.2019.06.009

Krisnandi, Y. K., Nurani, D. A., & Akmal. (2018). Partial Oxidation of Methane Over NiOx / Hierachichal ZSM-5 Catalyst Partial Oxidation of Methane Over NiOx / Hierachichal ZSM-5 Catalyst. IOP Conf. Series: Journal of Physics: Conf. Series 1095 (2018) 012005, doi :10.10, 5–10.

Kumar, S., & Das, J. (2021). Synthesis, structural and magnetic properties of NiO nanospheres and rGO-NiO nanocomposites and observing magnetocaloric effect in rGO-NiO nanocomposites. Materials Science and Engineering: B, 265(December 2020), 115007. https://doi.org/10.1016/j.mseb.2020.115007

Lei, D., Yu, K., Li, M. R., Wang, Y., Wang, Q., Liu, T., Liu, P., Lou, L. L., Wang, G., & Liu, S. (2017). Facet Effect of Single-Crystalline Pd Nanocrystals for Aerobic Oxidation of 5-Hydroxymethyl-2-furfural. In ACS Catalysis (Vol. 7, Issue 1). https://doi.org/10.1021/acscatal.6b02839

Li, J., Gao, M., Yan, W., & Yu, J. (2022). Regulation of the Si/Al ratios and Al distributions of zeolites and their impact on properties. Chemical Science, 14(8), 1935–1959. https://doi.org/10.1039/d2sc06010h

Liang, F., Chen, D., Liu, H., Liu, W., Xian, M., & Feng, D. (2019). One-Pot Synthesis of 5-Hydroxymethylfurfural from Glucose by Brønsted Acid-Free Bifunctional Porous Coordination Polymers in Water. ACS Omega, 4(5), 9316–9323. https://doi.org/10.1021/acsomega.9b00882

Liu, J., Cheng, F., Zhou, S., Zhu, L., Xu, Q., Yin, D., & Liu, X. (2024). Efficient targeted acquisition 2,5-furandicarboxylic acid derived from 5-hydroxymethylfurfural over novel copper and vanadium oxide-functionalized catalysts. Molecular Catalysis, 560(February), 114141. https://doi.org/10.1016/j.mcat.2024.114141

Marianou, A. A., Michailof, C. M., Pineda, A., Iliopoulou, E. F., Triantafyllidis, K. S., & Lappas, A. A. (2016). Glucose to Fructose Isomerization in Aqueous Media over Homogeneous and Heterogeneous Catalysts. ChemCatChem, 8(6), 1100–1110. https://doi.org/10.1002/cctc.201501203

Motagamwala, A. H., Won, W., Sener, C., Alonso, D. M., Maravelias, C. T., & Dumesic, J. A. (2018). Toward biomass-derived renewable plastics: Production of 2,5-furandicarboxylic acid from fructose. Science Advances, 4(1), 1–8. https://doi.org/10.1126/sciadv.aap9722

Park, G., Kang, J., Park, S. J., Kim, Y. T., Kwak, G., & Kim, S. (2022). Effect of acid modification of ZSM-5 catalyst on performance and coke formation for methanol-to-hydrocarbon reaction. Molecular Catalysis, 531(August), 112702. https://doi.org/10.1016/j.mcat.2022.112702

Prasad, K., Mahato, N., Yoo, K., & Kim, J. (2023). Morphology Regulated Hierarchical Rods-, Buds-, and Sheets-like CoMoO4 for Electrocatalytic Oxygen Evolution Reaction. Energies, 16(5). https://doi.org/10.3390/en16052441

Pratama, A. P., Krisnandi, Y. K., & Abdullah, I. (2020). Catalytic depolymerization of lignin from wood waste biomass over natural sourced ZSM-5 catalysts. IOP Conference Series: Materials Science and Engineering, 902(1). https://doi.org/10.1088/1757-899X/902/1/012051

Pratama, Arnia Putri, Rahayu, D. U. C., & Krisnandi, Y. K. (2020). Levulinic acid production from delignified rice husk waste over manganese catalysts: Heterogeneous versus homogeneous. Catalysts, 10(3). https://doi.org/10.3390/catal10030327

Rahman, M., Infantes-Molina, A., Hoffman, A. S., Bare, S. R., Emerson, K. L., & Khatib, S. J. (2020). Effect of Si/Al ratio of ZSM-5 support on structure and activity of Mo species in methane dehydroaromatization. Fuel, 278(May). https://doi.org/10.1016/j.fuel.2020.118290

Ramadhani, A. N., Abdullah, I., & Krisnandi, Y. K. (2022). Effect of Physicochemical Properties of Co and Mo Modified Natural Sourced Hierarchical ZSM-5 Zeolite Catalysts on Vanillin and Phenol Production from Diphenyl Ether. Bulletin of Chemical Reaction Engineering & Catalysis, 17(1), 225–239. https://doi.org/10.9767/bcrec.17.1.13372.225-239

Rathod, P. V, & Jadhav, V. H. (2018). Efficient Method for Synthesis of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural and Fructose Using Pd/CC Catalyst under Aqueous Conditions. ACS Sustainable Chemistry & Engineering, 6(5), 5766–5771. https://doi.org/10.1021/acssuschemeng.7b03124

Ren, J., Cao, J. P., & Zhao, X. Y. (2022). Fabrication strategies of Ni-based catalysts in reforming of biomass tar/tar model compounds. Applications in Energy and Combustion Science, 9, 100053. https://doi.org/10.1016/j.jaecs.2021.100053

Román-Leshkov, Y., Moliner, M., Labinger, J. A., & Davis, M. E. (2010). Mechanism of glucose isomerization using a solid Lewis acid catalyst in water. Angewandte Chemie (International Ed. in English), 49(47), 8954–8957. https://doi.org/10.1002/anie.201004689

Sabarish, R., & Unnikrishnan, G. (2017). Synthesis, characterization and catalytic activity of hierarchical ZSM-5 templated by carboxymethyl cellulose. Powder Technology, 320, 412–419. https://doi.org/10.1016/j.powtec.2017.07.041

Sajid, M., Zhao, X., & Liu, D. (2018). Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): Recent progress focusing on the chemical-catalytic routes. Green Chemistry, 20(24), 5427–5453. https://doi.org/10.1039/c8gc02680g

Shen, T., Hou, L., Gosset, J., Wang, H., Leng, S., Boumghar, Y., Barghi, S., & Xu, C. (2024). Recent advances in processes and technologies for production of 5-hydroxymethylfurfural and 2,5-furandicarboylic acid from carbohydrates. Chemical Engineering Journal, 500(June). https://doi.org/10.1016/j.cej.2024.156470

Souzanchi, S., Nazari, L., Rao, K. T. V., Yuan, Z., Tan, Z., & Xu, C. (Charles). (2023). 5-HMF production from industrial grade sugar syrups derived from corn and wood using niobium phosphate catalyst in a biphasic continuous-flow tubular reactor. Catalysis Today, 407(June 2021), 274–280. https://doi.org/10.1016/j.cattod.2021.07.032

Sun, C., Liao, Q., Xia, A., Fu, Q., Huang, Y., Zhu, X., Zhu, X., & Wang, Z. (2020). Degradation and transformation of furfural derivatives from hydrothermal pre-treated algae and lignocellulosic biomass during hydrogen fermentation. Renewable and Sustainable Energy Reviews, 131(May), 109983. https://doi.org/10.1016/j.rser.2020.109983

Tan, M., Ma, L., Rehman, M. S. U., Ahmed, M. A., Sajid, M., Xu, X., Sun, Y., Cui, P., & Xu, J. (2019). Screening of acidic and alkaline pretreatments for walnut shell and corn stover biorefining using two way heterogeneity evaluation. Renewable Energy, 132, 950–958. https://doi.org/10.1016/j.renene.2018.07.131

Tan, Z., Miao, G., Liu, C., Luo, H., Bao, L., Kong, L., & Sun, Y. (2016). Catalytic conversion of glucose into alkanediols over nickel-based catalysts: A mechanism study. RSC Advances, 6(67), 62747–62753. https://doi.org/10.1039/c6ra14738k

Tanjung, M. F., Zulys, A., & Krisnandi, Y. K. (2025). Step-wise conversion of glucose into 2,5 furandicarboxylic acid (FDCA) in GVL-H2O solvent using hierarchical NiO/ZSM-5 catalyst. Molecular Catalysis, 586(July), 115403. https://doi.org/10.1016/j.mcat.2025.115403

Teoh, L. G., & Li, K. D. (2012). Synthesis and characterization of NiO nanoparticles by solgel method. Materials Transactions, 53(12), 2135–2140. https://doi.org/10.2320/matertrans.M2012244

Totaro, G., Sisti, L., Marchese, P., Colonna, M., Romano, A., Gioia, C., Vannini, M., & Celli, A. (2022). Current Advances in the Sustainable Conversion of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid. ChemSusChem, 15(13), 1–13. https://doi.org/10.1002/cssc.202200501

Wang, L., & Xiao, F. S. (2015). Nanoporous catalysts for biomass conversion. Green Chemistry, 17(1), 24–39. https://doi.org/10.1039/c4gc01622j

Xu, C., Cai, J., Shi, W., Cui, L., & Wu, S. (2025). Efficient synthesis of 2,5-furandicarboxylic acid from corncob biomass using Ru/C and sulfonated carbon catalysts in a one-pot system. Biofuels, Bioproducts and Biorefining, 19(1), 109–120. https://doi.org/https://doi.org/10.1002/bbb.2696

Xu, Z., Yang, Y., Yan, P., Xia, Z., Liu, X., & Zhang, Z. C. (2020). Mechanistic understanding of humin formation in the conversion of glucose and fructose to 5-hydroxymethylfurfural in [BMIM]Cl ionic liquid. RSC Advances, 10(57), 34732–34737. https://doi.org/10.1039/d0ra05641c

Ye, D., Wu, T., Puri, A., Hebert, D. D., Siegler, M. A., Hendrich, M. P., Swart, M., & Garcia-Bosch, I. (2024). Enhanced Proton-Coupled Electron-Transfer Reactivity by a Mononuclear Nickel(II) Hydroxide Radical Complex. Inorganic Chemistry, 63(52), 24453–24465. https://doi.org/10.1021/acs.inorgchem.4c03370

Zhang, T., Wei, H., Jin, Y., & Xiao, H. (2023). Dehydration of glucose to 5-hydroxymethylfurfural over sn-containing dendritic mesoporous silica. Chemical Engineering Journal, 454(P3), 140415. https://doi.org/10.1016/j.cej.2022.140415

Zhao, C., Zhu, N., Qiu, G., Zhang, M., & Tian, H. (2023). Effective Synergistic Hafnium-Aluminum Bimetallic Oxides catalysts for the Synthesis of 5-Hydroxymethylfurfural from Glucose and Fructose. Molecular Catalysis, 547(May), 113407. https://doi.org/10.1016/j.mcat.2023.113407

Zhou, C., Zhao, J., Yagoub, A. E. G. A., Ma, H., Yu, X., Hu, J., Bao, X., & Liu, S. (2017). Conversion of glucose into 5-hydroxymethylfurfural in different solvents and catalysts: Reaction kinetics and mechanism. Egyptian Journal of Petroleum, 26(2), 477–487. https://doi.org/10.1016/j.ejpe.2016.07.005

Zhu, Z., Lu, G., Zhang, Z., Guo, Y., Guo, Y., & Wang, Y. (2013). Highly Active and Stable Co3O4/ZSM-5 Catalyst for Propane Oxidation: Effect of the Preparation Method. ACS Catalysis, 3(6), 1154–1164. https://doi.org/10.1021/cs400068v

Published

2025-12-31

How to Cite

Pratama, A. P., Mulyadi, A. J., Wibowo, R., & Krisnandi, Y. K. (2025). One-pot catalytic conversion of glucose to 2,5-furandicarboxylic acid over NiO-modified ZSM-5 zeolites: Effects of reaction temperature and solvent ratio. Environmental and Materials, 3(2). https://doi.org/10.61511/eam.v3i2.2025.2642

Issue

Section

Articles

Citation Check

Funding data