Optimizing vanillin and phenol production from benzyl phenyl ether using CoMoO4/H-ZSM-5: A Box-Behnken design approach

Authors

  • Irena Khatrin Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia; Solid Inorganic Framework Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia
  • Duha Rushida Amanullah Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia; Solid Inorganic Framework Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia
  • Rahmat Wibowo Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia
  • Russell Francis Howe Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, Scotland AB24 3UE, United Kingdom
  • Yuni Krisyuningsih Krisnandi Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia; Solid Inorganic Framework Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia

DOI:

https://doi.org/10.61511/eam.v3i2.2025.2161

Keywords:

benzyl phenyl ether, vanillin, phenol, CoMoO4/H-ZSM-5, Box-Behnken design

Abstract

Background: Lignin valorization into high-value chemicals is crucial for sustainable development. This study focused on optimizing the catalytic conversion of benzyl phenyl ether (BPE), a lignin model compound, to vanillin and phenolic compounds. Methods: Hierarchical H-ZSM-5 was synthesized via a dual-template method and subsequently modified by wet impregnation with bimetallic cobalt and molybdenum oxides (CoMoO4/H-ZSM-5). Catalyst properties were thoroughly characterized using various techniques, including XRD, FTIR, XRF, N2-physisorption, and SEM-EDS mapping. Reaction conditions, specifically Co:Mo ratio, temperature, and reaction time, were optimized using the Box-Behnken design (BBD), and product yields were quantified by High-Performance Liquid Chromatography (HPLC). Findings: Characterization confirmed successful catalyst synthesis, organic template removal, and bimetal oxide incorporation without significant structural damage. Catalytic tests demonstrated 100% BPE conversion. The highest experimental vanillin yield achieved was 54.69%. BBD analysis revealed that the interaction between Co:Mo ratio and temperature, as well as the quadratic effect of Co:Mo ratio, were the most influential factors impacting product yields. The optimal parameters for maximizing vanillin and phenolic yield were determined to be a Co:Mo ratio of 3:7, a temperature of 169 °C, and a reaction time of 31 minutes. While the phenolic model showed a reasonable fit (R² = 0.76), the vanillin model exhibited a lower fit (R² = 0.34) with significant lack-of-fit. Conclusion: This research provides crucial insights into the efficient production of high-value chemicals from BPE, offering a comprehensive optimization approach for the CoMoO4/H-ZSM-5 catalytic system. Novelty/Originality of this article: This study represents a novel contribution to lignin valorization.

References

Ahmad, K., & Upadhyayula, S. (2019). Conversion of the greenhouse gas CO2 to methanol over supported intermetallic Ga–Ni catalysts at atmospheric pressure: thermodynamic modeling and experimental study. Sustainable Energy & Fuels, 3(9), 2509–2520. https://doi.org/10.1039/C9SE00165D

Al-Jubouri, S. M. (2020). Synthesis of hierarchically porous ZSM-5 zeolite by self-assembly induced by aging in the absence of seeding-assistance. Microporous and Mesoporous Materials, 303, 110296. https://doi.org/10.1016/J.MICROMESO.2020.110296

Asghar, A., Iqbal, N., Aftab, L., Noor, T., Kariuki, B. M., Kidwell, L., & Easun, T. L. (2020). Ethylenediamine loading into a manganese-based metal–organic framework enhances water stability and carbon dioxide uptake of the framework. Royal Society Open Science, 7(3). https://doi.org/10.1098/RSOS.191934

Azreena, I. N., Lau, H. L. N., Asikin-Mijan, N., Hassan, M. A., Izham, S. M., Kennedy, E., ... & Taufiq-Yap, Y. H. (2021). A promoter effect on hydrodeoxygenation reactions of oleic acid by zeolite beta catalysts. Journal of analytical and applied pyrolysis, 155, 105044. https://doi.org/10.1016/J.JAAP.2021.105044

Bakhtyari, A., Rahimpour, M. R., & Raeissi, S. (2020). Cobalt-molybdenum catalysts for the hydrodeoxygenation of cyclohexanone. Renewable Energy, 150, 443–455. https://doi.org/10.1016/J.RENENE.2019.12.119

Bakhtyari, A., Sakhayi, A., Rahimpour, M. R., & Iulianelli, A. (2024). Conversion of lignin-derived ketonic intermediate to biofuel products: Syngas-assisted vs. Conventional hydrotreating. Fuel Processing Technology, 256, 108077. https://doi.org/10.1016/J.FUPROC.2024.108077

Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977. https://doi.org/10.1016/J.TALANTA.2008.05.019

Buenaño, L., Ali, E., Jafer, A., Zaki, S. H., Hammady, F. J., Khayoun Alsaadi, S. B., ... & Kazemi, A. (2024). Optimization by Box–Behnken design for environmental contaminants removal using magnetic nanocomposite. Scientific Reports, 14(1), 6950. https://doi.org/10.1038/S41598-024-57616-8

Dwivedi, G., & Sharma, M. P. (2015). Application of Box–Behnken design in optimization of biodiesel yield from Pongamia oil and its stability analysis. Fuel, 145, 256–262. https://doi.org/10.1016/J.FUEL.2014.12.063

El-Sheekh, M., Alwaleed, E. A., Kassem, W. M. A., & Saber, H. (2024). Optimizing the fucoidan extraction using Box-Behnken design and its potential bioactivity. International Journal of Biological Macromolecules, 277, 134490. https://doi.org/10.1016/J.IJBIOMAC.2024.134490

Fan, C., Wu, Z., Li, Z., Qin, Z., Zhu, H., Dong, M., Wang, J., & Fan, W. (2023). Controllable preparation of ultrafine Co3O4 nanoparticles on H-ZSM-5 with superior catalytic performance in lean methane combustion. Fuel, 334, 126815. https://doi.org/10.1016/J.FUEL.2022.126815

Gamal, M. S., Asikin-Mijan, N., Khalit, W. N. A. W., Arumugam, M., Izham, S. M., & Taufiq-Yap, Y. H. (2020). Effective catalytic deoxygenation of palm fatty acid distillate for green diesel production under hydrogen-free atmosphere over bimetallic catalyst CoMo supported on activated carbon. Fuel Processing Technology, 208, 106519. https://doi.org/10.1016/J.FUPROC.2020.106519

Gille, T., Seifert, M., Marschall, M. S., Bredow, S., Schneider, T., Busse, O., Reschetilowski, W., & Weigand, J. J. (2021). Conversion of Oxygenates on H-ZSM-5 Zeolites—Effects of Feed Structure and Si/Al Ratio on the Product Quality. Catalysts, 11(4), 432. https://doi.org/10.3390/CATAL11040432

Jiang, W., Cao, J. P., Yang, Z., Xie, J. X., Zhao, L., Zhu, C., Zhang, C., Zhao, X. Y., Zhao, Y. P., & Zhang, J. L. (2022). Hydrodeoxygenation of lignin and its model compounds to hydrocarbon fuels over a bifunctional Ga-doped HZSM-5 supported metal Ru catalyst. Applied Catalysis A: General, 633, 118516. https://doi.org/10.1016/J.APCATA.2022.118516

Keluo, C. H. E. N., Zhang, T., Xiaohui, C. H. E. N., Yingjie, H. E., & Liang, X. (2018). Model construction of micro-pores in shale: A case study of Silurian Longmaxi Formation shale in Dianqianbei area, SW China. Petroleum Exploration and Development, 45(3), 412-421. https://doi.org/10.1016/S1876-3804(18)30046-6

Kohler, A. J., Walter, C. H., & Shanks, B. H. (2023). Kinetic Analysis of the Hydrodeoxygenation of Aliphatic Volatilized Lignin Molecules on Bulk MoO3: Elucidating the Formation of Alkenes and Alkanes. ACS Catalysis, 13(22), 14813–14827. https://pubs.acs.org/doi/abs/10.1021/acscatal.3c04444

Kostyniuk, A., Key, D., & Mdleleni, M. (2020). 1-hexene isomerization over bimetallic M-Mo-ZSM-5 (M: Fe, Co, Ni) zeolite catalysts: Effects of transition metals addition on the catalytic performance. Journal of the Energy Institute, 93(2), 552–564. https://doi.org/10.1016/J.JOEI.2019.06.009

Kramer, C. A. C., & De Carvalho, L. S. (2021). α-Oxidation of banana lignin with atmospheric oxygen catalyzed by Co3O4. Reaction Chemistry & Engineering, 6(6), 1016–1022. https://doi.org/10.1039/D1RE00053E

Kumar, A., Prasad, R., & Sharma, Y. C. (2019). Ethanol steam reforming study over ZSM-5 supported cobalt versus nickel catalyst for renewable hydrogen generation. Chinese Journal of Chemical Engineering, 27(3), 677–684. https://doi.org/10.1016/J.CJCHE.2018.03.036

Liu, C. F., He, L. C., Wang, X. F., Chen, J., Lu, J. Q., & Luo, M. F. (2022). Tailoring Co3O4 active species to promote propane combustion over Co3O4/ZSM-5 catalyst. Molecular Catalysis, 524, 112297. https://doi.org/10.1016/J.MCAT.2022.112297

Luo, W., Cao, W., Bruijnincx, P. C. A., Lin, L., Wang, A., & Zhang, T. (2019). Zeolite-supported metal catalysts for selective hydrodeoxygenation of biomass-derived platform molecules. Green Chemistry, 21(14), 3744–3768. https://doi.org/10.1039/C9GC01216H

Luo, W., Yang, X., Wang, Z., Huang, W., Chen, J., Jiang, W., Wang, L., Cheng, X., Deng, Y., & Zhao, D. (2017). Synthesis of ZSM-5 aggregates made of zeolite nanocrystals through a simple solvent-free method. Microporous and Mesoporous Materials, 243, 112–118. https://doi.org/10.1016/J.MICROMESO.2017.01.040

Mate, V. R., Jha, A., Joshi, U. D., Patil, K. R., Shirai, M., & Rode, C. V. (2014). Effect of preparation parameters on characterization and activity of Co3O4 catalyst in liquid phase oxidation of lignin model substrates. Applied Catalysis A: General, 487, 130–138. https://doi.org/10.1016/J.APCATA.2014.08.023

Min, J. E., Kim, S., Kwak, G., Kim, Y. T., Han, S. J., Lee, Y., Jun, K. W., & Kim, S. K. (2018). Role of mesopores in Co/ZSM-5 for the direct synthesis of liquid fuel by Fischer–Tropsch synthesis. Catalysis Science & Technology, 8(24), 6346–6359. https://doi.org/10.1039/C8CY01931B

Moravvej, Z., Farshchi Tabrizi, F., Rahimpour, M. R., & Behrad Vakylabad, A. (2023). Exploiting the potential of cobalt molybdenum catalyst in elevated hydrodeoxygenation of furfural to 2-methyl furan. Fuel, 332, 126193. https://doi.org/10.1016/J.FUEL.2022.126193

Nada, M. H., & Larsen, S. C. (2017). Insight into seed-assisted template free synthesis of ZSM-5 zeolites. Microporous and Mesoporous Materials, 239, 444–452. https://doi.org/10.1016/J.MICROMESO.2016.10.040

Nazari, M., Yaripour, F., & Shifteh, S. (2021). Systematic evaluation and optimization of crystallization conditions for an ethanol-templated ZSM-5 zeolite using response surface methodology. Advanced Powder Technology, 32(12), 4621–4634. https://doi.org/10.1016/j.apt.2021.10.018

Pan, L., Wu, S., Huang, Z., Zhang, S., Wang, L., & Zhang, J. (2022). MoO 3 -modified SAPO-34 for photocatalytic nonoxidative coupling of methane. Catalysis Science & Technology, 12(10), 3322–3327. https://doi.org/10.1039/D2CY00502F

Prasad, K., Mahato, N., Yoo, K., & Kim, J. (2023). Morphology Regulated Hierarchical Rods-, Buds-, and Sheets-like CoMoO4 for Electrocatalytic Oxygen Evolution Reaction. Energies 2023, Vol. 16, Page 2441, 16(5), 2441. https://doi.org/10.3390/EN16052441

Pratama, A. P., Rahayu, D. U. C., & Krisnandi, Y. K. (2020). Levulinic acid production from delignified rice husk waste over manganese catalysts: Heterogeneous versus homogeneous. Catalysts, 10(3). https://doi.org/10.3390/catal10030327

Ramadhani, A. N., Abdullah, I., & Krisnandi, Y. K. (2022). Effect of Physicochemical Properties of Co and Mo Modified Natural Sourced Hierarchical ZSM-5 Zeolite Catalysts on Vanillin and Phenol Production from Diphenyl Ether. Bulletin of Chemical Reaction Engineering & Catalysis, 17(1), 225–239. https://doi.org/10.9767/BCREC.17.1.13372.225-239

Sabarish, R., & Unnikrishnan, G. (2017). Synthesis, characterization and catalytic activity of hierarchical ZSM-5 templated by carboxymethyl cellulose. Powder Technology, 320, 412–419. https://doi.org/10.1016/J.POWTEC.2017.07.041

Saini, K., Kumar, A., Biswas, B., & Bhaskar, T. (2022). Low-temperature alkali lignin depolymerization to functional chemicals. Biomass Conversion and Biorefinery, 12(1), 209–219. https://doi.org/10.1007/S13399-021-01478-X/METRICS

Serrano, D. P., Pinnavaia, T. J., Aguado, J., Escola, J. M., Peral, A., & Villalba, L. (2014). Hierarchical ZSM-5 zeolites synthesized by silanization of protozeolitic units: Mediating the mesoporosity contribution by changing the organosilane type. Catalysis Today, 227, 15–25. https://doi.org/10.1016/J.CATTOD.2013.10.052

Song, S., Zhang, J., & Yan, N. (2020). Support effects in the de-methoxylation of lignin monomer 4-propylguaiacol over molybdenum-based catalysts. Fuel Processing Technology, 199, 106224. https://doi.org/10.1016/J.FUPROC.2019.106224

Syeitkhajy, A., Hamid, M. A., Boroglu, M. S., & Boz, I. (2025). Efficient synthesis of phosphorus-promoted and alkali-modified ZSM-5 catalyst for catalytic dehydration of lactic acid to acrylic acid. Results in Chemistry, 13, 101942. https://doi.org/10.1016/J.RECHEM.2024.101942

Treacy, M. M. J., & Higgins, J. B. (2007). ZSM-5, Calcined. Collection of Simulated XRD Powder Patterns for Zeolites, 278–279. https://doi.org/10.1016/B978-044453067-7/50604-3

Wang, B., Yang, X., Chen, Y., Wang, J., Lan, M., Tang, K., & Yang, F. (2024). Biomass-Derived-Carbon-Supported Spinel Cobalt Molybdate as High-Efficiency Electrocatalyst for Oxygen Evolution Reaction. Molecules, 29(20), 4953. https://doi.org/10.3390/MOLECULES29204953/S1

Wang, L., Zhang, Z., Yin, C., Shan, Z., & Xiao, F. S. (2010). Hierarchical mesoporous zeolites with controllable mesoporosity templated from cationic polymers. Microporous and Mesoporous Materials, 131(1–3), 58–67. https://doi.org/10.1016/j.micromeso.2009.12.001

Zeng, H., Cao, D., Qiu, Z., & Li, C.-J. (2018). Palladium-Catalyzed Formal Cross-Coupling of Diaryl Ethers with Amines: Slicing the 4-O-5 Linkage in Lignin Models. Angewandte Chemie, 130(14), 3814–3819. https://doi.org/10.1002/ANGE.201712211

Zhao, J., Jayakumar, A., & Lee, J. M. (2018). Bifunctional Sulfonated MoO3-ZrO2 Binary Oxide Catalysts for the One-Step Synthesis of 2,5-Diformylfuran from Fructose. ACS Sustainable Chemistry and Engineering, 6(3), 2976–2982. https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.7b02671

Zhu, Z., Lu, G., Zhang, Z., Guo, Y., Guo, Y., & Wang, Y. (2013). Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation: Effect of the preparation method. ACS Catalysis, 3(6), 1154–1164. https://doi.org/10.1021/CS400068V

Downloads

Published

2025-12-31

How to Cite

Khatrin, I., Amanullah, D. R., Wibowo, R., Howe, R. F., & Krisnandi, Y. K. (2025). Optimizing vanillin and phenol production from benzyl phenyl ether using CoMoO4/H-ZSM-5: A Box-Behnken design approach. Environmental and Materials, 3(2), 97–113. https://doi.org/10.61511/eam.v3i2.2025.2161

Issue

Section

Articles

Citation Check

Funding data