Optimizing vanillin and phenol production from benzyl phenyl ether using CoMoO4/H-ZSM-5: A Box-Behnken design approach
DOI:
https://doi.org/10.61511/eam.v3i2.2025.2161Keywords:
benzyl phenyl ether, vanillin, phenol, CoMoO4/H-ZSM-5, Box-Behnken designAbstract
Background: Lignin valorization into high-value chemicals is crucial for sustainable development. This study focused on optimizing the catalytic conversion of benzyl phenyl ether (BPE), a lignin model compound, to vanillin and phenolic compounds. Methods: Hierarchical H-ZSM-5 was synthesized via a dual-template method and subsequently modified by wet impregnation with bimetallic cobalt and molybdenum oxides (CoMoO4/H-ZSM-5). Catalyst properties were thoroughly characterized using various techniques, including XRD, FTIR, XRF, N2-physisorption, and SEM-EDS mapping. Reaction conditions, specifically Co:Mo ratio, temperature, and reaction time, were optimized using the Box-Behnken design (BBD), and product yields were quantified by High-Performance Liquid Chromatography (HPLC). Findings: Characterization confirmed successful catalyst synthesis, organic template removal, and bimetal oxide incorporation without significant structural damage. Catalytic tests demonstrated 100% BPE conversion. The highest experimental vanillin yield achieved was 54.69%. BBD analysis revealed that the interaction between Co:Mo ratio and temperature, as well as the quadratic effect of Co:Mo ratio, were the most influential factors impacting product yields. The optimal parameters for maximizing vanillin and phenolic yield were determined to be a Co:Mo ratio of 3:7, a temperature of 169 °C, and a reaction time of 31 minutes. While the phenolic model showed a reasonable fit (R² = 0.76), the vanillin model exhibited a lower fit (R² = 0.34) with significant lack-of-fit. Conclusion: This research provides crucial insights into the efficient production of high-value chemicals from BPE, offering a comprehensive optimization approach for the CoMoO4/H-ZSM-5 catalytic system. Novelty/Originality of this article: This study represents a novel contribution to lignin valorization.
References
Ahmad, K., & Upadhyayula, S. (2019). Conversion of the greenhouse gas CO2 to methanol over supported intermetallic Ga–Ni catalysts at atmospheric pressure: thermodynamic modeling and experimental study. Sustainable Energy & Fuels, 3(9), 2509–2520. https://doi.org/10.1039/C9SE00165D
Al-Jubouri, S. M. (2020). Synthesis of hierarchically porous ZSM-5 zeolite by self-assembly induced by aging in the absence of seeding-assistance. Microporous and Mesoporous Materials, 303, 110296. https://doi.org/10.1016/J.MICROMESO.2020.110296
Asghar, A., Iqbal, N., Aftab, L., Noor, T., Kariuki, B. M., Kidwell, L., & Easun, T. L. (2020). Ethylenediamine loading into a manganese-based metal–organic framework enhances water stability and carbon dioxide uptake of the framework. Royal Society Open Science, 7(3). https://doi.org/10.1098/RSOS.191934
Azreena, I. N., Lau, H. L. N., Asikin-Mijan, N., Hassan, M. A., Izham, S. M., Kennedy, E., ... & Taufiq-Yap, Y. H. (2021). A promoter effect on hydrodeoxygenation reactions of oleic acid by zeolite beta catalysts. Journal of analytical and applied pyrolysis, 155, 105044. https://doi.org/10.1016/J.JAAP.2021.105044
Bakhtyari, A., Rahimpour, M. R., & Raeissi, S. (2020). Cobalt-molybdenum catalysts for the hydrodeoxygenation of cyclohexanone. Renewable Energy, 150, 443–455. https://doi.org/10.1016/J.RENENE.2019.12.119
Bakhtyari, A., Sakhayi, A., Rahimpour, M. R., & Iulianelli, A. (2024). Conversion of lignin-derived ketonic intermediate to biofuel products: Syngas-assisted vs. Conventional hydrotreating. Fuel Processing Technology, 256, 108077. https://doi.org/10.1016/J.FUPROC.2024.108077
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977. https://doi.org/10.1016/J.TALANTA.2008.05.019
Buenaño, L., Ali, E., Jafer, A., Zaki, S. H., Hammady, F. J., Khayoun Alsaadi, S. B., ... & Kazemi, A. (2024). Optimization by Box–Behnken design for environmental contaminants removal using magnetic nanocomposite. Scientific Reports, 14(1), 6950. https://doi.org/10.1038/S41598-024-57616-8
Dwivedi, G., & Sharma, M. P. (2015). Application of Box–Behnken design in optimization of biodiesel yield from Pongamia oil and its stability analysis. Fuel, 145, 256–262. https://doi.org/10.1016/J.FUEL.2014.12.063
El-Sheekh, M., Alwaleed, E. A., Kassem, W. M. A., & Saber, H. (2024). Optimizing the fucoidan extraction using Box-Behnken design and its potential bioactivity. International Journal of Biological Macromolecules, 277, 134490. https://doi.org/10.1016/J.IJBIOMAC.2024.134490
Fan, C., Wu, Z., Li, Z., Qin, Z., Zhu, H., Dong, M., Wang, J., & Fan, W. (2023). Controllable preparation of ultrafine Co3O4 nanoparticles on H-ZSM-5 with superior catalytic performance in lean methane combustion. Fuel, 334, 126815. https://doi.org/10.1016/J.FUEL.2022.126815
Gamal, M. S., Asikin-Mijan, N., Khalit, W. N. A. W., Arumugam, M., Izham, S. M., & Taufiq-Yap, Y. H. (2020). Effective catalytic deoxygenation of palm fatty acid distillate for green diesel production under hydrogen-free atmosphere over bimetallic catalyst CoMo supported on activated carbon. Fuel Processing Technology, 208, 106519. https://doi.org/10.1016/J.FUPROC.2020.106519
Gille, T., Seifert, M., Marschall, M. S., Bredow, S., Schneider, T., Busse, O., Reschetilowski, W., & Weigand, J. J. (2021). Conversion of Oxygenates on H-ZSM-5 Zeolites—Effects of Feed Structure and Si/Al Ratio on the Product Quality. Catalysts, 11(4), 432. https://doi.org/10.3390/CATAL11040432
Jiang, W., Cao, J. P., Yang, Z., Xie, J. X., Zhao, L., Zhu, C., Zhang, C., Zhao, X. Y., Zhao, Y. P., & Zhang, J. L. (2022). Hydrodeoxygenation of lignin and its model compounds to hydrocarbon fuels over a bifunctional Ga-doped HZSM-5 supported metal Ru catalyst. Applied Catalysis A: General, 633, 118516. https://doi.org/10.1016/J.APCATA.2022.118516
Keluo, C. H. E. N., Zhang, T., Xiaohui, C. H. E. N., Yingjie, H. E., & Liang, X. (2018). Model construction of micro-pores in shale: A case study of Silurian Longmaxi Formation shale in Dianqianbei area, SW China. Petroleum Exploration and Development, 45(3), 412-421. https://doi.org/10.1016/S1876-3804(18)30046-6
Kohler, A. J., Walter, C. H., & Shanks, B. H. (2023). Kinetic Analysis of the Hydrodeoxygenation of Aliphatic Volatilized Lignin Molecules on Bulk MoO3: Elucidating the Formation of Alkenes and Alkanes. ACS Catalysis, 13(22), 14813–14827. https://pubs.acs.org/doi/abs/10.1021/acscatal.3c04444
Kostyniuk, A., Key, D., & Mdleleni, M. (2020). 1-hexene isomerization over bimetallic M-Mo-ZSM-5 (M: Fe, Co, Ni) zeolite catalysts: Effects of transition metals addition on the catalytic performance. Journal of the Energy Institute, 93(2), 552–564. https://doi.org/10.1016/J.JOEI.2019.06.009
Kramer, C. A. C., & De Carvalho, L. S. (2021). α-Oxidation of banana lignin with atmospheric oxygen catalyzed by Co3O4. Reaction Chemistry & Engineering, 6(6), 1016–1022. https://doi.org/10.1039/D1RE00053E
Kumar, A., Prasad, R., & Sharma, Y. C. (2019). Ethanol steam reforming study over ZSM-5 supported cobalt versus nickel catalyst for renewable hydrogen generation. Chinese Journal of Chemical Engineering, 27(3), 677–684. https://doi.org/10.1016/J.CJCHE.2018.03.036
Liu, C. F., He, L. C., Wang, X. F., Chen, J., Lu, J. Q., & Luo, M. F. (2022). Tailoring Co3O4 active species to promote propane combustion over Co3O4/ZSM-5 catalyst. Molecular Catalysis, 524, 112297. https://doi.org/10.1016/J.MCAT.2022.112297
Luo, W., Cao, W., Bruijnincx, P. C. A., Lin, L., Wang, A., & Zhang, T. (2019). Zeolite-supported metal catalysts for selective hydrodeoxygenation of biomass-derived platform molecules. Green Chemistry, 21(14), 3744–3768. https://doi.org/10.1039/C9GC01216H
Luo, W., Yang, X., Wang, Z., Huang, W., Chen, J., Jiang, W., Wang, L., Cheng, X., Deng, Y., & Zhao, D. (2017). Synthesis of ZSM-5 aggregates made of zeolite nanocrystals through a simple solvent-free method. Microporous and Mesoporous Materials, 243, 112–118. https://doi.org/10.1016/J.MICROMESO.2017.01.040
Mate, V. R., Jha, A., Joshi, U. D., Patil, K. R., Shirai, M., & Rode, C. V. (2014). Effect of preparation parameters on characterization and activity of Co3O4 catalyst in liquid phase oxidation of lignin model substrates. Applied Catalysis A: General, 487, 130–138. https://doi.org/10.1016/J.APCATA.2014.08.023
Min, J. E., Kim, S., Kwak, G., Kim, Y. T., Han, S. J., Lee, Y., Jun, K. W., & Kim, S. K. (2018). Role of mesopores in Co/ZSM-5 for the direct synthesis of liquid fuel by Fischer–Tropsch synthesis. Catalysis Science & Technology, 8(24), 6346–6359. https://doi.org/10.1039/C8CY01931B
Moravvej, Z., Farshchi Tabrizi, F., Rahimpour, M. R., & Behrad Vakylabad, A. (2023). Exploiting the potential of cobalt molybdenum catalyst in elevated hydrodeoxygenation of furfural to 2-methyl furan. Fuel, 332, 126193. https://doi.org/10.1016/J.FUEL.2022.126193
Nada, M. H., & Larsen, S. C. (2017). Insight into seed-assisted template free synthesis of ZSM-5 zeolites. Microporous and Mesoporous Materials, 239, 444–452. https://doi.org/10.1016/J.MICROMESO.2016.10.040
Nazari, M., Yaripour, F., & Shifteh, S. (2021). Systematic evaluation and optimization of crystallization conditions for an ethanol-templated ZSM-5 zeolite using response surface methodology. Advanced Powder Technology, 32(12), 4621–4634. https://doi.org/10.1016/j.apt.2021.10.018
Pan, L., Wu, S., Huang, Z., Zhang, S., Wang, L., & Zhang, J. (2022). MoO 3 -modified SAPO-34 for photocatalytic nonoxidative coupling of methane. Catalysis Science & Technology, 12(10), 3322–3327. https://doi.org/10.1039/D2CY00502F
Prasad, K., Mahato, N., Yoo, K., & Kim, J. (2023). Morphology Regulated Hierarchical Rods-, Buds-, and Sheets-like CoMoO4 for Electrocatalytic Oxygen Evolution Reaction. Energies 2023, Vol. 16, Page 2441, 16(5), 2441. https://doi.org/10.3390/EN16052441
Pratama, A. P., Rahayu, D. U. C., & Krisnandi, Y. K. (2020). Levulinic acid production from delignified rice husk waste over manganese catalysts: Heterogeneous versus homogeneous. Catalysts, 10(3). https://doi.org/10.3390/catal10030327
Ramadhani, A. N., Abdullah, I., & Krisnandi, Y. K. (2022). Effect of Physicochemical Properties of Co and Mo Modified Natural Sourced Hierarchical ZSM-5 Zeolite Catalysts on Vanillin and Phenol Production from Diphenyl Ether. Bulletin of Chemical Reaction Engineering & Catalysis, 17(1), 225–239. https://doi.org/10.9767/BCREC.17.1.13372.225-239
Sabarish, R., & Unnikrishnan, G. (2017). Synthesis, characterization and catalytic activity of hierarchical ZSM-5 templated by carboxymethyl cellulose. Powder Technology, 320, 412–419. https://doi.org/10.1016/J.POWTEC.2017.07.041
Saini, K., Kumar, A., Biswas, B., & Bhaskar, T. (2022). Low-temperature alkali lignin depolymerization to functional chemicals. Biomass Conversion and Biorefinery, 12(1), 209–219. https://doi.org/10.1007/S13399-021-01478-X/METRICS
Serrano, D. P., Pinnavaia, T. J., Aguado, J., Escola, J. M., Peral, A., & Villalba, L. (2014). Hierarchical ZSM-5 zeolites synthesized by silanization of protozeolitic units: Mediating the mesoporosity contribution by changing the organosilane type. Catalysis Today, 227, 15–25. https://doi.org/10.1016/J.CATTOD.2013.10.052
Song, S., Zhang, J., & Yan, N. (2020). Support effects in the de-methoxylation of lignin monomer 4-propylguaiacol over molybdenum-based catalysts. Fuel Processing Technology, 199, 106224. https://doi.org/10.1016/J.FUPROC.2019.106224
Syeitkhajy, A., Hamid, M. A., Boroglu, M. S., & Boz, I. (2025). Efficient synthesis of phosphorus-promoted and alkali-modified ZSM-5 catalyst for catalytic dehydration of lactic acid to acrylic acid. Results in Chemistry, 13, 101942. https://doi.org/10.1016/J.RECHEM.2024.101942
Treacy, M. M. J., & Higgins, J. B. (2007). ZSM-5, Calcined. Collection of Simulated XRD Powder Patterns for Zeolites, 278–279. https://doi.org/10.1016/B978-044453067-7/50604-3
Wang, B., Yang, X., Chen, Y., Wang, J., Lan, M., Tang, K., & Yang, F. (2024). Biomass-Derived-Carbon-Supported Spinel Cobalt Molybdate as High-Efficiency Electrocatalyst for Oxygen Evolution Reaction. Molecules, 29(20), 4953. https://doi.org/10.3390/MOLECULES29204953/S1
Wang, L., Zhang, Z., Yin, C., Shan, Z., & Xiao, F. S. (2010). Hierarchical mesoporous zeolites with controllable mesoporosity templated from cationic polymers. Microporous and Mesoporous Materials, 131(1–3), 58–67. https://doi.org/10.1016/j.micromeso.2009.12.001
Zeng, H., Cao, D., Qiu, Z., & Li, C.-J. (2018). Palladium-Catalyzed Formal Cross-Coupling of Diaryl Ethers with Amines: Slicing the 4-O-5 Linkage in Lignin Models. Angewandte Chemie, 130(14), 3814–3819. https://doi.org/10.1002/ANGE.201712211
Zhao, J., Jayakumar, A., & Lee, J. M. (2018). Bifunctional Sulfonated MoO3-ZrO2 Binary Oxide Catalysts for the One-Step Synthesis of 2,5-Diformylfuran from Fructose. ACS Sustainable Chemistry and Engineering, 6(3), 2976–2982. https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.7b02671
Zhu, Z., Lu, G., Zhang, Z., Guo, Y., Guo, Y., & Wang, Y. (2013). Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation: Effect of the preparation method. ACS Catalysis, 3(6), 1154–1164. https://doi.org/10.1021/CS400068V
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Irena Khatrin, Duha Rushida Amanullah, Rahmat Wibowo, Russell Francis Howe, Yuni Krisyuningsih Krisnandi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Universitas Indonesia
Grant numbers NKB-670/UN2.RST/HKP.05.00/2022














