Recent advancements of carbazoles synthesis: Towards the green synthesis approach

Authors

  • Shafrizal Rasyid Atriardi Chemistry Institute for Functional Material, Pusan National University, Busan, Korea, Republic of

DOI:

https://doi.org/10.61511/eam.v3i2.2025.1979

Keywords:

carbazoles, environment, green synthesis, natural products

Abstract

Background: The importance of carbazoles synthesis had been a motive to study deeper about the synthesis of carbazoles. For the development of carbazoles synthesis, a green synthesis approach became an important aspect that needed to be improved. The sustainable synthesis of carbazoles also plays a role in the reducing the hazardous impact to the environment. Methods: This carbazoles synthesis review was based on the generation of A or B ring in the carbazole molecules that analyzed by retrosynthetic analysis, updating several works from the past 10 years and highlighting the green synthesis approaches of carbazoles. Findings: Some of the green synthesis approaches were reported by the utilization of a green energy sources, mild solvents, and low catalysts loading that were used in the reaction. Non-toxic and non-hazardous material were also preferable to maintain the sustainability of this reaction. These currently developed approaches were inevitably encountered by several limitations, including lower yields and reactivities. Conclusion: Some of the reviews provides an improvement of the results, providing a broad substrate scopes with the moderate-to-good yield using a green synthesis approach. Novelty/Originality of this article: This review were focusing on the development of a green synthesis approach of carbazoles, which never reported in any review before.

References

Aggarwal, T., Sushmita, & Verma, A. K. (2019). Recent advances in the synthesis of carbazoles from indoles. Organic & Biomolecular Chemistry, 17(36), 8330–8342. https://doi.org/10.1039/C9OB01381D

Alayrac, C., Schollmeyer, D., & Witulski, B. (2009). First total synthesis of antiostatin A1, a potent carbazole-based naturally occurring antioxidant. Chemical Communications, (10), 1464–1466. https://doi.org/10.1039/B820291E

Ali, H. A., Ismail, M. A., Fouda, A. E. S., & Ghaith, E. A. (2023). A fruitful century for the scalable synthesis and reactions of biphenyl derivatives: Applications and biological aspects. RSC Advances, 13(33), 18262–18305. https://doi.org/10.1039/D3RA03531J

Allen, L. A., & Natho, P. (2023). Trends in carbazole synthesis–an update (2013–2023). Organic & Biomolecular Chemistry, 21(45), 8956–8974. https://doi.org/10.1039/d3ob01605f

Antonchick, A. P., Samanta, R., Kulikov, K., & Lategahn, J. (2011). Organocatalytic, oxidative, intramolecular C–H bond amination and metal-free cross-amination of unactivated arenes at ambient temperature. Angewandte Chemie International Edition, 50(37), 8605–8608. https://doi.org/10.1002/anie.201102984

Banerjee, A., Kundu, S., Bhattacharyya, A., Sahu, S., & Maji, M. S. (2021). Benzannulation strategies for the synthesis of carbazoles, indolocarbazoles, benzocarbazoles, and carbolines. Organic Chemistry Frontiers, 8(15), 2710–2771. https://doi.org/10.1039/D1QO00092F

Berkowitz, W. F., & McCombie, S. W. (2017). Cyclization of vinyl and aryl azides into pyrroles, indoles, carbazoles, and related fused pyrroles. Organic Reactions, 1-170. https://doi.org/10.1002/0471264180.or092.02

Borsche, W., & Meyer, R. (1921). Über desoxy‐indigo. Berichte der Deutschen Chemischen Gesellschaft (A and B Series), 54(10), 2854–2856. https://doi.org/10.1002/cber.19210541031

Biswas, S., Dagar, A., Srivastava, A., & Samanta, S. (2015). Access to substituted carbazoles in water by a one-pot sequential reaction of α,β-substituted nitro olefins with 2-(3-formyl-1H-indol-2-yl)acetates. European Journal of Organic Chemistry, 2015(20), 4493–4503. https://doi.org/10.1002/ejoc.201500470

Cao, D., Ying, A., Mo, H., Chen, D., Chen, G., Wang, Z., & Yang, J. (2018). [4 + 2] annulation of 3-nitroindoles with alkylidene malononitriles: Entry to substituted carbazol-4-amine derivatives. Journal of Organic Chemistry, 83(24), 12568–12574. https://doi.org/10.1021/acs.joc.8b01876

Cadogan, J. I. G., Cameron-Wood, M., Mackie, R. K., & Searle, R. J. G. (1965). The reactivity of organophosphorus compounds. Part XIX. Reduction of nitro-compounds by triethyl phosphite: A convenient new route to carbazoles, indoles, indazoles, triazoles, and related compounds. Journal of the Chemical Society, 1965, 4831–4837. https://doi.org/10.1039/JR9650004831

Carioscia, A., Iaparde, D., Incerto, E., Pietro, J. D., Giansanti, L., Pesciaioli, F., & Carlone, A. (2025). Carbazole framework as functional scaffold for the design of synthetic receptors. Chemistry – A European Journal, 31(1), e202500126. https://doi.org/10.1002/chem.202500126

Chagas, M. R. M., Quirino, W. G., Neto, A. M. J. C., de Sousa, E. A., Cremona, M., Rocco, M. L. M., & Mota, G. V. S. (2009). Degradation of the N,N′-bis-(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine by photon irradiation. Thin Solid Films, 517(15), 4461–4463. https://doi.org/10.1016/j.tsf.2009.01.083

Chakrabarty, S., Chatterjee, I., Tebben, L., & Studer, A. (2013). Reactions of arynes with nitrosoarenes—An approach to substituted carbazoles. Angewandte Chemie International Edition, 52(11), 2968–2971. https://doi.org/10.1002/anie.201209447

Choi, S., Chatterjee, T., Choi, W. J., You, Y., & Cho, E. J. (2015). Synthesis of carbazoles by a merged visible light photoredox and palladium-catalyzed process. ACS Catalysis, 5(8), 4796–4802. https://doi.org/10.1021/acscatal.5b00817

Chutia, A., Arandhara, P. J., & Saikia, A. K. (2024). Synthesis of highly π-extended dihydrobenzo[a]indenocarbazole scaffolds via tandem benzannulation and Friedel−Crafts reaction of 2-alkynylanilines and 2-alkynylbenzaldehydes promoted by Lewis acid. Journal of Organic Chemistry, 89(19), 11542–11557. https://doi.org/10.1021/acs.joc.4c01245

Debnath, S., Das, T., Pati, T. K., Majumdar, S., & Maiti, D. K. (2020). Metal-free indole-phenacyl bromide cyclization: A regioselective synthesis of 3,5-diarylcarbazoles. Journal of Organic Chemistry, 85(21), 13272–13279. https://doi.org/10.1021/acs.joc.0c01670

Fantozzi, N., Volle, J., Porcheddu, A., Virieux, D., Garcia, F., & Colacino, E. (2023). Green metrics in mechanochemistry. Chemical Society Reviews, 52(13), 6680–6714. https://doi.org/10.1039/D2CS00997H

Georgiades, S. N., & Nicolaou, P. G. (2019). Recent advances in carbazole syntheses. Advances in Heterocyclic Chemistry, 2019, Elsevier Inc., 1–50. https://doi.org/10.1016/bs.aihch.2018.10.001

Goo, D. Y., & Woo, S. K. (2016). One-pot synthesis of carbazoles via tandem C–C cross-coupling and reductive amination. Organic & Biomolecular Chemistry, 14(1), 122–129. https://doi.org/10.1039/C5OB01952D

Graebe, C., & Glazer, C. (1872). Berichte der Deutschen Chemischen Gesellschaft, 5, 12–15.

Hegedus, L. S., Allen, G. F., Bozell, J. J., & Waterman, E. L. (1978). Palladium-assisted intramolecular amination of olefins: Synthesis of nitrogen heterocycles. Journal of the American Chemical Society, 100(19), 5800–5802. https://doi.org/10.1021/ja00486a035

Kim, H. S., Goo, D. Y., & Woo, S. K. (2017). Efficient synthesis of aryl-substituted carbazoles via tandem double or triple Suzuki coupling and Cadogan cyclization. Tetrahedron, 73(10), 1413–1420. https://doi.org/10.1016/j.tet.2017.01.038

Knölker, H. J., & Reddy, K. R. (2002). Isolation and synthesis of biologically active carbazole alkaloids. Chemical Reviews, 102(12), 4303–4427. https://doi.org/10.1021/cr020059j

Ledwon, P. (2019). Recent advances of donor-acceptor type carbazole-based molecules for light emitting applications. Organic Electronics, 75, 105422. https://doi.org/10.1016/j.orgel.2019.105422

Lim, J. W., Kim, S. H., Kim, J., & Kim, J. N. (2015). Synthesis of benzo[a]carbazoles from 2-arylindoles via a sequential propargylation, propargyl-allenyl isomerization, and 6π-electrocyclization. Bulletin of the Korean Chemical Society, 36(6), 1351–1356. https://doi.org/10.1002/bkcs.10258

Liu, D., Gao, Y., Huang, J., Fu, Z., & Huang, W. (2018). Carbene-catalyzed construction of carbazoles from enals and 2-methyl-3-oxoacetate indoles. Journal of Organic Chemistry, 83(22), 14210–14217. https://doi.org/10.1021/acs.joc.8b02532

Liu, D., Huang, J., Fu, Z., & Huang, W. (2019). Direct construction of carbazoles from 2-methyl-indole-3-carbaldehydes and enals. Green Chemistry, 21(5), 968–972. https://doi.org/10.1039/C9GC00064J

Liu, K., & Zhang, S. (2015). Highly efficient synthesis of 1,3-dihydroxy-2-carboxycarbazole and its neuroprotective effects. ACS Medicinal Chemistry Letters, 6(8), 894–897. https://doi.org/10.1021/acsmedchemlett.5b00158

Maiti, S., Achar, T. K., & Mal, P. (2017). An organic intermolecular dehydrogenative annulation reaction. Organic Letters, 19(8), 2006–2009. https://doi.org/10.1021/acs.orglett.7b00562

May, S. A., & Wilson, T. M. (2006). An efficient synthesis of carbazole-based secretory phospholipase A2 (sPLA2) inhibitors LSN433771 and LSN426891. Tetrahedron Letters, 47(7), 1351–1354. https://doi.org/10.1016/j.tetlet.2005.12.043

Melnika, I., Bringis, K., & Katkevics, M. (2013). Synthesis of N-methylcarbazoles from N-(2-iodoaryl)-N-methylanilines in the presence of potassium tert-butoxide and iron(II) bromide. Chemistry of Heterocyclic Compounds, 49(4), 529–534. https://doi.org/10.1007/s10593-013-1291-x

Mitra, A. K. (2022). Sesquicentennial birth anniversary of carbazole, a multifaceted wonder molecule: A revisit to its synthesis, photophysical and biological studies. Journal of the Iranian Chemical Society, 19(7), 2075–2113. https://doi.org/10.1007/s13738-021-02444-0

Munawar, S., Zahoor, A. F., Mansha, A., Bokhari, T. H., & Irfan, A. (2024). Update on novel synthetic approaches towards the construction of carbazole nuclei: A review. RSC Advances, 14(7), 2929–2950. https://doi.org/10.1039/d3ra07270c

Qiu, Y., Kong, W., Fu, C., & Ma, S. (2012). Carbazoles via AuCl3-catalyzed cyclization of 1-(indol-2-yl)-3-alkyn-1-ols. Organic Letters, 14(24), 6198–6201. https://doi.org/10.1021/ol3029498

Rathore, K. S., Harode, M., & Katukojvala, S. (2014). Regioselective π-extension of indoles with rhodium enalcarbenoids – synthesis of substituted carbazoles. Organic & Biomolecular Chemistry, 12(42), 8641–8645. https://doi.org/10.1039/C4OB01693A

Sakthivel, S., & Balamurugan, R. (2018). Annulation of a highly functionalized diazo building block with indoles under Sc(OTf)3/Rh2(OAc)4 multicatalysis through Michael addition/cyclization sequence. Journal of Organic Chemistry, 83(19), 12171–12183. https://doi.org/10.1021/acs.joc.8b02127

Sato, E., Yukiue, A., Mitsudo, K., & Suga, S. (2023). Anodic dehydrogenative aromatization of tetrahydrocarbazoles leading to carbazoles. Organic Letters, 25(19), 5339–5344. https://doi.org/10.1021/acs.orglett.3c01914

Schmidt, A. W., Reddy, K. R., & Knölker, H. J. (2012). Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids. Chemical Reviews, 112(5), 3193–3328. https://doi.org/10.1021/cr200447s

Soos, T., Timari, G., & Hajos, G. (1999). A concise synthesis of furostifoline. Tetrahedron Letters, 40(46), 8608–8609. https://doi.org/10.1016/S0040-4039(99)01803-1

Stokes, B. J., Jovanović, B., Dong, H., Richert, K. J., Riell, R. D., & Driver, T. G. (2009). Rh2(II)-catalyzed synthesis of carbazoles from biaryl azides. Journal of Organic Chemistry, 74(8), 3225–3230. https://doi.org/10.1021/jo9002536

Sundberg, R. J., Brenner, M., Suter, R. S., & Das, B. P. (1970). Reactions of aryl nitrenes. Bond reorganizations in o-biphenylnitrene and phenylnitrene. Tetrahedron Letters, 11(28), 2715–2718. https://doi.org/10.1016/S0040-4039(01)98320-0

Tian, X., Song, L., & Hashmi, S. K. (2020). Synthesis of carbazoles and related heterocycles from sulfilimines by intramolecular C–H aminations. Angewandte Chemie International Edition, 59(33), 12342–12346. https://doi.org/10.1002/anie.202000146

Uoyama, H., Goushi, K., Shizu, K., Nomura, H., & Adachi, C. (2012). Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 492(7428), 234–238. https://doi.org/10.1038/nature11687

Verma, A. K., Danodia, A. K., Saunthwal, R. K., Patel, M., & Choudhary, D. (2015). Palladium-catalyzed triple successive C–H functionalization: Direct synthesis of functionalized carbazoles from indoles. Organic Letters, 17(15), 3658–3661. https://doi.org/10.1021/acs.orglett.5b01476

Wang, J., Zhu, H., Qiu, Y., Niu, Y., Chen, S., Li, Y., Liu, X., & Liang, Y. (2015). Facile synthesis of carbazoles via a tandem iodocyclization with 1,2-alkyl migration and aromatization. Organic Letters, 17(12), 3186–3189. https://doi.org/10.1021/acs.orglett.5b01590

Weisberg, E., Boulton, C., Kelly, L. M., Manley, P., Fabbro, D., Meyer, T., Gilliland, D. G., & Griffin, J. D. (2002). Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell, 1(6), 433–443. https://doi.org/10.1016/S1535-6108(02)00069-7

Yang, C., Wan, Y., Sun, T., Li, G., Shi, Z., & Xue, D. (2025). Synthesis of carbazoles: Light-promoted tandem coupling of nitroarenes with Grignard reagents. Organic Chemistry Frontiers, 12(6), 2165–2172. https://doi.org/10.1039/D5QO00019J

Yang, L., Zhang, Y., Zou, X., Lu, H., & Li, G. (2018). Visible-light-promoted intramolecular C–H amination in aqueous solution: Synthesis of carbazoles. Green Chemistry, 20(6), 1362–1366. https://doi.org/10.1039/C7GC03392C

Yin, J., Ma, Y., Li, G., Peng, M., & Lin, W. (2020). A versatile small-molecule fluorescence scaffold: Carbazole derivatives for bioimaging. Coordination Chemistry Reviews, 412, 213257. https://doi.org/10.1016/j.ccr.2020.213257

Yuan, Z. G., Wang, Q., Zheng, A., Zhang, K., Lu, L. Q., Tang, Z., & Xiao, W. J. (2016). Visible light-photocatalysed carbazole synthesis via a formal (4 + 2) cycloaddition of indole-derived bromides and alkynes. Chemical Communications, 52(29), 5128–5131. https://doi.org/10.1039/C5CC10542K

Zhao, J., Li, P., Xia, C., & Li, F. (2015). Facile synthesis of trisubstituted carbazoles by acid-catalyzed ring-opening annulation of 2-amidodihydrofurans with indoles. Chemistry – A European Journal, 21(46), 16383–16386. https://doi.org/10.1002/chem.201503260

Zhang, M., Zhao, P., Wu, D., Qiu, Z., Zhao, C., Zhang, W., Li, F., & Zhou, J., Liu, L. (2023). Brønsted acid-catalyzed reaction of N arylnaphthalen-2-amines with quinone esters for the construction of carbazole and C–N axially chiral carbazole derivatives. Journal of Organic Chemistry, 88(5), 2841–2850. https://doi.org/10.1021/acs.joc.2c02518

Zhang, G., Liu, S., Ma, L., Gao, W., Qin, D., & Chen, J. (2020). Scalable electrochemical transition-metal-free dehydrogenative cross-coupling amination enabled alkaloid Clausines synthesis. Advanced Synthesis & Catalysis, 362(11), 2342–2347. https://doi.org/10.1002/adsc.202000228

Downloads

Published

2025-12-31

How to Cite

Atriardi, S. R. (2025). Recent advancements of carbazoles synthesis: Towards the green synthesis approach. Environmental and Materials, 3(2), 80–96. https://doi.org/10.61511/eam.v3i2.2025.1979

Issue

Section

Articles

Citation Check