Increasing energy density of vanadium redox flow batteries: A comprehensive review

Authors

  • Sabeel Ahmed Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia
  • Iman Abdullah Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia
  • Yuni Krisyuningsih Krisnandi Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia

DOI:

https://doi.org/10.61511/eam.v3i2.2025.1828

Keywords:

vanadium redox flow battery (VRFB), energy density, electrolyte optimization, electrode modification, membrane engineering

Abstract

Background: Vanadium Redox Flow Batteries (VRFBs) represent a leading energy storage technology for renewable integration due to their long cycle life, high safety, and flexible scalability. However, their low energy density and high cost continue to limit widespread adoption. This study aims to synthesize and critically evaluate recent advances in enhancing VRFB performance through innovations in electrode materials, electrolyte chemistry, and membrane design. Methods: This study adopts a comprehensive literature review approach, analyzing theoretical and experimental research published in recent years. The review focuses on advancements in nanostructured electrode surfaces, optimized electrolyte formulations, and functional hybrid membranes. Theoretical insights from materials science and electrochemistry were integrated to establish the correlation between structure, performance, and efficiency. Findings: The reviewed studies reveal that nanostructured and heteroatom-doped electrodes enhance redox kinetics and minimize side reactions, while optimized electrolytes with mixed acids and stabilizers improve vanadium solubility and thermal stability. Hybrid polymer–inorganic membranes effectively reduce vanadium ion crossover and maintain high proton conductivity, thereby increasing coulombic and energy efficiencies. Collectively, these advancements improve power output, reduce self-discharge, and enhance long-term cycling performance, moving VRFBs closer to economic feasibility. Conclusion: Advancements in material design and system optimization are pivotal in overcoming the limitations of conventional VRFBs. Continued research on scalable, low-cost materials, electrolyte recycling, and hybrid integration will further promote sustainable energy storage. Novelty/Originality of this article: This review uniquely integrates material-level and system-level perspectives, offering a holistic understanding of how innovations across components collectively advance high-efficiency, cost-effective, and environmentally sustainable VRFB technology for next-generation renewable energy systems.

References

Agarwal, H., Roy, E., Singh, N., Klusener, P. A. A., Stephens, R. M., & Zhou, Q. T. (2024). Electrode Treatments for Redox Flow Batteries: Translating Our Understanding from Vanadium to Aqueous-Organic. Advanced Science, 11(1), 2307209. https://doi.org/https://doi.org/10.1002/advs.202307209

Ahn, Y., & Kim, D. (2022). High energy efficiency and stability of vanadium redox flow battery using pore-filled anion exchange membranes with ultra-low V4+ permeation. Journal of Industrial and Engineering Chemistry, 110, 395–404. https://doi.org/10.1016/j.jiec.2022.03.016

Ahn, Y., Moon, J., Park, S. E., Shin, J., Wook Choi, J., & Kim, K. J. (2021). High-performance bifunctional electrocatalyst for iron-chromium redox flow batteries. Chemical Engineering Journal, 421. https://doi.org/10.1016/j.cej.2020.127855

Amini, K., & Pritzker, M. D. (2020). In situ polarization study of zinc–cerium redox flow batteries. Journal of Power Sources, 471. https://doi.org/10.1016/j.jpowsour.2020.228463

Aramendia, I., Fernandez-Gamiz, U., Martinez-San-vicente, A., Zulueta, E., & Lopez-Guede, J. M. (2021). Vanadium redox flow batteries: A review oriented to fluid-dynamic optimization. In Energies (Vol. 14, Issue 1). MDPI AG. https://doi.org/10.3390/en14010176

Arenas, L. F., Ponce de León, C., & Walsh, F. C. (2017). Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage. Journal of Energy Storage, 11, 119–153. https://doi.org/10.1016/j.est.2017.02.007

Arevalo-Cid, P., Dias, P., Mendes, A., & Azevedo, J. (2021). Redox flow batteries: A new frontier on energy storage. In Sustainable Energy and Fuels (Vol. 5, Issue 21, pp. 5366–5419). Royal Society of Chemistry. https://doi.org/10.1039/d1se00839k

Bartolozzi, M. (1989). Development of redox flow batteries. A historical bibliography. Journal of Power Sources, 27(3), 219–234. https://doi.org/10.1016/0378-7753(89)80037-0

Bayeh, A. W., Kabtamu, D. M., Chang, Y. C., Chen, G. C., Chen, H. Y., Lin, G. Y., Liu, T. R., Wondimu, T. H., Wang, K. C., & Wang, C. H. (2018). Ta2O5-Nanoparticle-Modified Graphite Felt As a High-Performance Electrode for a Vanadium Redox Flow Battery. ACS Sustainable Chemistry and Engineering, 6(3), 3019–3028. https://doi.org/10.1021/acssuschemeng.7b02752

Blume, N., Turek, T., & Minke, C. (2024). Sustainability Development of Stationary Batteries: A Circular Economy Approach for Vanadium Flow Batteries. Batteries, 10, 240. https://doi.org/10.3390/batteries10070240

Che, X., Tang, W., Dong, J., Aili, D., & Yang, J. (2022). Anion exchange membranes based on long side-chain quaternary ammonium-functionalized poly(arylene piperidinium)s for vanadium redox flow batteries. Science China Materials, 65(3), 683–694. https://doi.org/10.1007/s40843-021-1786-0

Chen, D., Hickner, M. A., Agar, E., & Kumbur, E. C. (2013a). Optimized Anion Exchange Membranes for Vanadium Redox Flow Batteries. ACS Applied Materials & Interfaces, 5(15), 7559–7566. https://doi.org/10.1021/am401858r

Chen, D., Hickner, M. A., Agar, E., & Kumbur, E. C. (2013b). Optimizing membrane thickness for vanadium redox flow batteries. Journal of Membrane Science, 437, 108–113. https://doi.org/https://doi.org/10.1016/j.memsci.2013.02.007

Chen, H., Zhang, X., Liu, J., & T, C. (2013). Compressed Air Energy Storage. In InTechOpen. https://doi.org/10.5772/52221

Chen, R. (2023). Redox flow batteries: mitigating cross-contamination via bipolar redox-active materials and bipolar membranes. Current Opinion in Electrochemistry, 37, 101188.

Chen, X., Li, L., Jiang, Y., Feng, Z., Li, Q., Jiang, L., Dai, L., Wang, L., & He, Z. (2025). Manipulating the local electronic structure microenvironment at the MXene interface to achieve efficient anode for vanadium redox flow battery. Journal of Energy Chemistry, 104, 118–126. https://doi.org/10.1016/j.jechem.2024.11.062

Cotterman, T. (2013). WISE - Energy Storage Technologies: Transforming America’s Intelligent Electrical Infrastructure. IEEE. http://ieeexplore.ieee.org/document/6978820

Couture, G., Alaaeddine, A., Boschet, F., & Ameduri, B. (2011). Polymeric materials as anion-exchange membranes for alkaline fuel cells. Progress in Polymer Science, 36(11), 1521–1557. https://doi.org/https://doi.org/10.1016/j.progpolymsci.2011.04.004

Davies, T., & Tummino, J. (2018). High-Performance Vanadium Redox Flow Batteries with Graphite Felt Electrodes. C, 4(1), 8. https://doi.org/10.3390/c4010008

De Leon, C. P., Frías-Ferrer, A., González-García, J., Szánto, D. A., & Walsh, F. C. (2006). Redox flow cells for energy conversion. Journal of Power Sources, 160(1), 716–732.

Di, M., Xiu, Y., Dong, Z., Hu, L., Gao, L., Dai, Y., Yan, X., Zhang, N., Pan, Y., Jiang, X., & He, G. (2021). Two-dimensional MoS2 nanosheets constructing highly ion-selective composite membrane for vanadium redox flow battery. Journal of Membrane Science, 623, 119051. https://doi.org/https://doi.org/10.1016/j.memsci.2021.119051

Ding, C., Shen, Z., Zhu, Y., & Cheng, Y. (2023). Insights into the Modification of Carbonous Felt as an Electrode for Vanadium Redox Flow Batteries. In Materials (Vol. 16, Issue 10). MDPI. https://doi.org/10.3390/ma16103811

Duan, Z. N., Qu, Z. G., Wang, Q., & Wang, J. J. (2019). Structural modification of vanadium redox flow battery with high electrochemical corrosion resistance. Applied Energy, 250, 1632–1640. https://doi.org/https://doi.org/10.1016/j.apenergy.2019.04.186

Düerkop, D., Widdecke, H., Schilde, C., Kunz, U., & Schmiemann, A. (2021). Polymer membranes for all-vanadium redox flow batteries: A review. Membranes, 11(3). https://doi.org/10.3390/membranes11030214

Flox, C., Skoumal, M., Rubio-Garcia, J., Andreu, T., & Morante, J. R. (2013). Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries. Applied Energy, 109, 344–351. https://doi.org/10.1016/j.apenergy.2013.02.001

Gencten, M., & Sahin, Y. (2020). A critical review on progress of the electrode materials of vanadium redox flow battery. International Journal of Energy Research, 44(10), 7903–7923. https://doi.org/https://doi.org/10.1002/er.5487

González, Z., Flox, C., Blanco, C., Granda, M., Morante, J. R., Menéndez, R., & Santamaría, R. (2017). Outstanding electrochemical performance of a graphene-modified graphite felt for vanadium redox flow battery application. Journal of Power Sources, 338, 155–162. https://doi.org/10.1016/j.jpowsour.2016.10.069

Gores, H.-J., & Barthel, J. (1983). Non-aqueous electrolyte solutions - Promising materials for electrochemical technologies. Naturwissenschaften, 70(10), 495–503. https://doi.org/10.1007/BF00394055

Grosse Austing, J., Nunes Kirchner, C., Hammer, E. M., Komsiyska, L., & Wittstock, G. (2015). Study of an unitised bidirectional vanadium/air redox flow battery comprising a two-layered cathode. Journal of Power Sources, 273, 1163–1170. https://doi.org/10.1016/j.jpowsour.2014.09.177

Guarnieri, M., Mattavelli, P., Petrone, G., & Spagnuolo, G. (2016). Vanadium Redox Flow Batteries: Potentials and Challenges of an Emerging Storage Technology. IEEE Industrial Electronics Magazine, 10(4), 20–31. https://doi.org/10.1109/MIE.2016.2611760

Gundlapalli, R., Kumar, S., & Jayanti, S. (2018). Stack Design Considerations for Vanadium Redox Flow Battery. INAE Letters, 3(3), 149–157. https://doi.org/10.1007/s41403-018-0044-1

Han, D., & Shanmugam, S. (2022a). Active material crossover suppression with bi-ionic transportability by an amphoteric membrane for Zinc–Bromine redox flow battery. Journal of Power Sources, 540. https://doi.org/10.1016/j.jpowsour.2022.231637

Han, D., & Shanmugam, S. (2022b). Active material crossover suppression with bi-ionic transportability by an amphoteric membrane for Zinc–Bromine redox flow battery. Journal of Power Sources, 540. https://doi.org/10.1016/j.jpowsour.2022.231637

He, S., Chai, S., & Li, H. (2025). Nafion-Based Proton Exchange Membranes for Vanadium Redox Flow Batteries. ChemSusChem, 18(10), e202402506. https://doi.org/https://doi.org/10.1002/cssc.202402506

He, Z., Liu, J., Han, H., Chen, Y., Zhou, Z., Zheng, S., Lu, W., Liu, S., & He, Z. (2013). Effects of organic additives containing-NH2 and-SO3H on electrochemical properties of vanadium redox flow battery. Electrochimica Acta, 106, 556–562. https://doi.org/10.1016/j.electacta.2013.05.086

Herr, T., Fischer, P., Tübke, J., Pinkwart, K., & Elsner, P. (2014). Increasing the energy density of the non-aqueous vanadium redox flow battery with the acetonitrile-1,3-dioxolane-dimethyl sulfoxide solvent mixture. Journal of Power Sources, 265, 317–324. https://doi.org/10.1016/j.jpowsour.2014.04.141

Hosseini, S. M., Madaeni, S. S., Khodabakhshi, A. R., & Zendehnam, A. (2010). Preparation and surface modification of PVC/SBR heterogeneous cation exchange membrane with silver nanoparticles by plasma treatment. Journal of Membrane Science, 365(1–2), 438–446. https://doi.org/10.1016/j.memsci.2010.09.043

Houser, J., Pezeshki, A., Clement, J. T., Aaron, D., & Mench, M. M. (2017). Architecture for improved mass transport and system performance in redox flow batteries. Journal of Power Sources, 351, 96–105.

Hu, L., Montzka, S. A., Andrews, A., Dlugokencky, E. J., Vimont, I. J., Sweeney, C., Nance, J. D., Thoning, K. W., Ibarra Espinosa, S., Hall, B. D., Miller, S. M., Ottinger, D., Bogle, S., Godwin, D., DeCola, P., Western, L., Nevison, C. D., & Bruhwiler, L. (2022). U.S. non-CO2 greenhouse gas emissions for 2007 - 2020 derived from atmospheric observations. AGU Fall Meeting Abstracts, 2022, A55G-02.

Huynh, T. T. K., Yang, T., Nayanthara, P. S., Yang, Y., Ye, J., & Wang, H. (2025). Construction of High-Performance Membranes for Vanadium Redox Flow Batteries: Challenges, Development, and Perspectives. In Nano-Micro Letters (Vol. 17, Issue 1). Springer Science and Business Media B.V. https://doi.org/10.1007/s40820-025-01736-x

Hwang, G.-J., & Ohya, H. (1996). Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery. In Journal of Membrane Science (Vol. 120).

Hwang, G.-J., & Ohya, H. (1997). blEMmiANE SCIENCE ELSEVIER Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery. In Journal of Membrane Science (Vol. 132).

Jeong, D., Kim, S. C., Kang, M. G., Lim, S. N., Woo, J. Y., Hwang, H., Choi, S. Q., & Park, J. (2024). Renewable and hydrophilic carbon quantum dots derived from human hair as the filler in Nafion composite membrane for vanadium redox flow battery application. Sustainable Materials and Technologies, 42. https://doi.org/10.1016/j.susmat.2024.e01141

Jiang, Y., Liu, Z., Ren, Y., Tang, A., Dai, L., Wang, L., Liu, S., Liu, Y., & He, Z. (2024). Maneuverable B-site cation in perovskite tuning anode reaction kinetics in vanadium redox flow batteries. Journal of Materials Science and Technology, 186, 199–206. https://doi.org/10.1016/j.jmst.2023.12.005

Jiménez-Blasco, U., Arrebola, J. C., & Caballero, A. (2023). Recent Advances in Bromine Complexing Agents for Zinc–Bromine Redox Flow Batteries. In Materials (Vol. 16, Issue 23). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ma16237482

Jirabovornwisut, T., & Arpornwichanop, A. (2019). A review on the electrolyte imbalance in vanadium redox flow batteries. International Journal of Hydrogen Energy, 44(45), 24485–24509. https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.07.106

Kausar, N., Mousa, A., & Skyllas‐Kazacos, M. (2016a). The effect of additives on the high‐temperature stability of the vanadium redox flow battery positive electrolytes. ChemElectroChem, 3(2), 276–282.

Kausar, N., Mousa, A., & Skyllas‐Kazacos, M. (2016b). The effect of additives on the high‐temperature stability of the vanadium redox flow battery positive electrolytes. ChemElectroChem, 3(2), 276–282.

Kim, K. J., Park, M.-S., Kim, Y.-J., Kim, J. H., Dou, S. X., & Skyllas-Kazacos, M. (2015). A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. Journal of Materials Chemistry A, 3(33), 16913–16933. https://doi.org/10.1039/C5TA02613J

Kim, K., Park, M.-S., Kim, Y., Kim, J. H., Dou, S., & Skyllas-Kazacos, M. (2015). A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. Journal of Materials Chemistry A.

Küttinger, M., Brunetaud, R., Włodarczyk, J. K., Fischer, P., & Tübke, J. (2021). Cycle behaviour of hydrogen bromine redox flow battery cells with bromine complexing agents. Journal of Power Sources, 495. https://doi.org/10.1016/j.jpowsour.2021.229820

Lallo, E., Khataee, A., & Lindström, R. W. (2022). Article Vanadium Redox Flow Battery Using AemionTM Anion Exchange Membranes. Processes, 10(2). https://doi.org/10.3390/pr10020270

Lei, Y., Liu, S., Gao, C., Liang, X., He, Z., Deng, Y., & He, Z. (2013). Effect of Amino Acid Additives on the Positive Electrolyte of Vanadium Redox Flow Batteries. Journal of The Electrochemical Society, 160(4), A722–A727. https://doi.org/10.1149/2.006306jes

Leung, P., Li, X., Ponce De León, C., Berlouis, L., Low, C. T. J., & Walsh, F. C. (2012). Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Advances, 2(27), 10125–10156. https://doi.org/10.1039/c2ra21342g

Leung, P., Li, X., Ponce de León, C., Berlouis, L., Low, C. T., & Walsh, F. (2012). Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv., 2, 10125–10156. https://doi.org/10.1039/C2RA21342G

Li, J., Al-Yasiri, M., Pham, H., & Park, J. (2024). Redox flow batteries (pp. 327–347). https://doi.org/10.1016/B978-0-12-817507-1.00003-X

Li, Q., Jiang, J. H., Pei, D., Li, J., Xue, Z. C., Zhang, T., Yu, M., Zhou, P., Sun, H., & Zhang, T. (2025). Nb2CTx decorated graphite felt as high performance negative electrode for vanadium redox flow battery. Journal of Power Sources, 643. https://doi.org/10.1016/j.jpowsour.2025.237031

Li, Z., Yang, W., Bao, J., Kong, Y., Jing, S., Zhang, J., Ren, G., Sun, L., & Du, M. (2024). Reduced graphene oxide/MXene hybrid decorated graphite felt as an effective electrode for vanadium redox flow battery. RSC Advances, 14(17), 12158–12170. https://doi.org/10.1039/d4ra01306a

Ling, L., Xiao, M., Han, D., Ren, S., Wang, S., & Meng, Y. (2019). Porous composite membrane of PVDF/Sulfonic silica with high ion selectivity for vanadium redox flow battery. Journal of Membrane Science, 585, 230–237. https://doi.org/https://doi.org/10.1016/j.memsci.2018.11.082

Liu, L., Guo, Z., Yang, J., Wang, S., He, Z., & Wang, C. (2021). High ion selectivity Aquivion-based hybrid membranes for all vanadium redox flow battery. Advanced Composites and Hybrid Materials, 4(3), 451–458. https://doi.org/10.1007/s42114-021-00261-w

Lobato-Peralta, D. R., Molina-Serrano, A. J., Luque-Centeno, J. M., Sánchez-Laganga, B., Sebastián, D., Carrasco-Marín, F., Lázaro, M. J., & Alegre, C. (2025). Improving energy storage properties of carbon felt electrodes for vanadium redox flow batteries via ZIF modifications. Chemical Engineering Journal, 515. https://doi.org/10.1016/j.cej.2025.163534

Lu, W., Yuan, Z., Zhao, Y., Zhang, H., Zhang, H., & Li, X. (2017a). Porous membranes in secondary battery technologies. Chemical Society Reviews, 46(8), 2199–2236.

Lu, W., Yuan, Z., Zhao, Y., Zhang, H., Zhang, H., & Li, X. (2017b). Porous membranes in secondary battery technologies. Chemical Society Reviews, 46(8), 2199–2236.

Mizrak, A. V., Sever, H. E., Ehring, J. C., Matthews, K., Roslyk, I., Inman, A., & Kumbur, E. C. (2025). Two-dimensional MXene based anodic slurry electrodes for vanadium redox flow batteries. Electrochimica Acta, 520. https://doi.org/10.1016/j.electacta.2025.145865

Moon, H. N., Song, H. B., & Kang, M. S. (2021). Thin reinforced ion-exchange membranes containing fluorine moiety for all-vanadium redox flow battery. Membranes, 11(11). https://doi.org/10.3390/membranes11110867

Olabi, A. G., Allam, M. A., Abdelkareem, M. A., Deepa, T. D., Alami, A. H., Abbas, Q., Alkhalidi, A., & Sayed, E. T. (2023). Redox Flow Batteries: Recent Development in Main Components, Emerging Technologies, Diagnostic Techniques, Large-Scale Applications, and Challenges and Barriers. In Batteries (Vol. 9, Issue 8). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/batteries9080409

Pahlevaninezhad, M., Miller, E. E., Yang, L., Prophet, L. S., Singh, A., Storwick, T., Pahlevani, M., Pope, M. A., & Roberts, E. P. L. (2023). Exfoliated Graphene Composite Membrane for the All-Vanadium Redox Flow Battery. ACS Applied Energy Materials, 6(12), 6505–6517. https://doi.org/10.1021/acsaem.3c00428

Palanisamy, G., & Oh, T. H. (2022). TiO2 Containing Hybrid Composite Polymer Membranes for Vanadium Redox Flow Batteries. In Polymers (Vol. 14, Issue 8). MDPI. https://doi.org/10.3390/polym14081617

Park, M., Ryu, J., Kim, Y., & Cho, J. (2014). Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups: a highly efficient electrocatalyst for all-vanadium redox flow batteries. Energy & Environmental Science, 7(11), 3727–3735.

Ponce de León, C., Frías-Ferrer, A., González-García, J., Szánto, D. A., & Walsh, F. C. (2006). Redox flow cells for energy conversion. Journal of Power Sources, 160(1), 716–732. https://doi.org/10.1016/j.jpowsour.2006.02.095

Popat, Y., Trudgeon, D., Zhang, C., Walsh, F. C., Connor, P., & Li, X. (2022). Carbon Materials as Positive Electrodes in Bromine-Based Flow Batteries. In ChemPlusChem (Vol. 87, Issue 1). John Wiley and Sons Inc. https://doi.org/10.1002/cplu.202100441

Rahman, F., & Skyllas-Kazacos, M. (2009a). Vanadium redox battery: Positive half-cell electrolyte studies. Journal of Power Sources, 189(2), 1212–1219. https://doi.org/https://doi.org/10.1016/j.jpowsour.2008.12.113

Rahman, F., & Skyllas-Kazacos, M. (2009b). Vanadium redox battery: Positive half-cell electrolyte studies. Journal of Power Sources, 189(2), 1212–1219.

Ren, J., Dong, Y., Dai, J., Hu, H., Zhu, Y., & Teng, X. (2017). A novel chloromethylated/quaternized poly(sulfone)/poly(vinylidene fluoride) anion exchange membrane with ultra-low vanadium permeability for all vanadium redox flow battery. Journal of Membrane Science, 544, 186–194. https://doi.org/https://doi.org/10.1016/j.memsci.2017.09.015

Ren, J., Wang, Z., Sun, J., Guo, Z., Liu, B., Fan, X., & Zhao, T. (2023). In-situ electrodeposition of homogeneous and dense bismuth nanoparticles onto scale-up graphite felt anodes for vanadium redox flow batteries. Journal of Power Sources, 586. https://doi.org/10.1016/j.jpowsour.2023.233655

Renewable energy highlights Electricity generation by energy source Fossil fuels Nuclear Other non-renewables Pumped storage Renewables % Renewables % Variable Renewables. (2024).

Sadhasivam, T., Kim, H.-T., Park, W.-S., Lim, H., Ryi, S.-K., Roh, S.-H., & Jung, H.-Y. (2017). Low permeable composite membrane based on sulfonated poly(phenylene oxide) (sPPO) and silica for vanadium redox flow battery. International Journal of Hydrogen Energy, 42(30), 19035–19043. https://doi.org/https://doi.org/10.1016/j.ijhydene.2017.06.030

Satola, B. (2021). Review—Bipolar Plates for the Vanadium Redox Flow Battery. Journal of The Electrochemical Society, 168. https://doi.org/10.1149/1945-7111/ac0177

Schubert, C., Fekih Hassen, W., Poisl, B., Seitz, S., Schubert, J., Oyarbide, E., Gaudó, P., & Pettinger, K.-H. (2023). Hybrid Energy Storage Systems Based on Redox-Flow Batteries: Recent Developments, Challenges, and Future Perspectives. Batteries, 9, 211. https://doi.org/10.3390/batteries9040211

Sharma, P., Kumar, S., Bhushan, M., & Shahi, V. K. (2021). Ion selective redox active anion exchange membrane: Improved performance of vanadium redox flow battery. Journal of Membrane Science, 637, 119626. https://doi.org/https://doi.org/10.1016/j.memsci.2021.119626

Sharma, P., & Shahi, V. K. (2023). Fabricating a Partially Fluorinated Hybrid Cation-Exchange Membrane for Long Durable Performance of Vanadium Redox Flow Batteries. ACS Applied Materials & Interfaces, 15(7), 9171–9181. https://doi.org/10.1021/acsami.2c16720

Skyllas-Kazacos, M., Chakrabarti, B., Hajimolana, Y. S., Mjalli, F., & Saleem, M. (2011a). Progress in Flow Battery Research and Development. Journal of the Electrochemical Society, 158, R55–R79. https://doi.org/10.1149/1.3599565

Skyllas-Kazacos, M., Chakrabarti, M. H., Hajimolana, S. A., Mjalli, F. S., & Saleem, M. (2011b). Progress in flow battery research and development. Journal of the Electrochemical Society, 158(8), R55.

Skyllas-Kazacos, M., Chakrabarti, M. H., Hajimolana, S. A., Mjalli, F. S., & Saleem, M. (2011c). Progress in Flow Battery Research and Development. Journal of The Electrochemical Society, 158(8), R55. https://doi.org/10.1149/1.3599565

Skyllas‐Kazacos, M., & Grossmith, F. (1987). Efficient Vanadium Redox Flow Cell. Journal of The Electrochemical Society, 134(12), 2950. https://doi.org/10.1149/1.2100321

Skyllas-Kazacos, M., Kasherman, D., Hong, D. R., & Kazacos, M. (1991). Characteristics and performance of 1 kW UNSW vanadium redox battery. Journal of Power Sources, 35(4), 399–404. https://doi.org/https://doi.org/10.1016/0378-7753(91)80058-6

Skyllas-Kazacos, M., Kazacos, G., Poon, G., & Verseema, H. (2010a). Recent advances with UNSW vanadium‐based redox flow batteries. International Journal of Energy Research, 34, 182–189. https://doi.org/10.1002/er.1658

Skyllas-Kazacos, M., Kazacos, G., Poon, G., & Verseema, H. (2010b). Recent advances with UNSW vanadium‐based redox flow batteries. International Journal of Energy Research, 34, 182–189. https://doi.org/10.1002/er.1658

Skyllas-Kazacos, M., & Kazacos, M. (2011). State of charge monitoring methods for vanadium redox flow battery control. Journal of Power Sources, 196(20), 8822–8827. https://doi.org/https://doi.org/10.1016/j.jpowsour.2011.06.080

Soloveichik, G. (2015). Flow Batteries: Current Status and Trends. Chemical Reviews, 115. https://doi.org/10.1021/cr500720t

Stark, C., Pless, J., Logan, J., Zhou, E., & Arent, D. J. (2015). Renewable electricity: Insights for the coming decade. National Renewable Energy Lab.(NREL), Golden, CO (United States).

Sum, E., Rychcik, M., & Skyllas-kazacos, M. (1985). Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. Journal of Power Sources, 16(2), 85–95. https://doi.org/https://doi.org/10.1016/0378-7753(85)80082-3

Tian, W., Du, H., Wang, J., Weigand, J. J., Qi, J., Wang, S., & Li, L. (2023). A Review of Electrolyte Additives in Vanadium Redox Flow Batteries. In Materials (Vol. 16, Issue 13). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ma16134582

Tiwari, K., Wang, C. H., Lou, B. S., Wang, C. J., Moirangthem, I., Rahmadtulloh, I., & Lee, J. W. (2024). High entropy alloy oxide coating of VNbMoTaWOx as a novel electrode modification of vanadium redox flow batteries. Journal of Energy Storage, 94. https://doi.org/10.1016/j.est.2024.112344

Trovò, A., Alotto, P., Giomo, M., Moro, F., & Guarnieri, M. (n.d.). Recent results on industrial-scale energy storage with Vanadium Redox Flow Battery.

Vijayakumar, M., Nie, Z., Walter, E., Hu, J., Liu, J., Sprenkle, V., & Wang, W. (2015). Understanding aqueous electrolyte stability through combined computational and magnetic resonance spectroscopy: a case study on vanadium redox flow battery electrolytes. ChemPlusChem, 80(2), 428–437.

Viswanathan, V. V., Crawford, A. J., Thomsen, E. C., Shamim, N., Li, G., Huang, Q., & Reed, D. M. (2023). An Overview of the Design and Optimized Operation of Vanadium Redox Flow Batteries for Durations in the Range of 4–24 Hours. In Batteries (Vol. 9, Issue 4). MDPI. https://doi.org/10.3390/batteries9040221

Vrána, J., Charvát, J., Mazúr, P., Bělský, P., Dundálek, J., Pocedič, J., & Kosek, J. (2018). Commercial perfluorosulfonic acid membranes for vanadium redox flow battery: Effect of ion-exchange capacity and membrane internal structure. Journal of Membrane Science, 552, 202–212. https://doi.org/https://doi.org/10.1016/j.memsci.2018.02.011

Wan, C. T. C., Rodby, K. E., Perry, M. L., Chiang, Y. M., & Brushett, F. R. (2023). Hydrogen evolution mitigation in iron-chromium redox flow batteries via electrochemical purification of the electrolyte. Journal of Power Sources, 554. https://doi.org/10.1016/j.jpowsour.2022.232248

Wang, G., Chen, J., Wang, X., Tian, J., Kang, H., Zhu, X., Zhang, Y., Liu, X., & Wang, R. (2013). Influence of several additives on stability and electrochemical behavior of V(V) electrolyte for vanadium redox flow battery. Journal of Electroanalytical Chemistry, 709, 31–38. https://doi.org/10.1016/j.jelechem.2013.09.022

Wang, G., Chen, J., Wang, X., Tian, J., Kang, H., Zhu, X., Zhang, Y., Liu, X., & Wang, R. (2014). Study on stabilities and electrochemical behavior of V(V) electrolyte with acid additives for vanadium redox flow battery. Journal of Energy Chemistry, 23(1), 73–81. https://doi.org/10.1016/S2095-4956(14)60120-0

Wang, H., Soong, W. L., Pourmousavi, S. A., Zhang, X., Ertugrul, N., & Xiong, B. (2023). Thermal dynamics assessment of vanadium redox flow batteries and thermal management by active temperature control. Journal of Power Sources, 570, 233027. https://doi.org/https://doi.org/10.1016/j.jpowsour.2023.233027

Wang, K., Zhang, Y., Liu, L., Xi, J., Wu, Z., & Qiu, X. (2018a). Broad temperature adaptability of vanadium redox flow battery-Part 3: The effects of total vanadium concentration and sulfuric acid concentration. Electrochimica Acta, 259, 11–19.

Wang, K., Zhang, Y., Liu, L., Xi, J., Wu, Z., & Qiu, X. (2018b). Broad temperature adaptability of vanadium redox flow battery-Part 3: The effects of total vanadium concentration and sulfuric acid concentration. Electrochimica Acta, 259, 11–19. https://doi.org/10.1016/j.electacta.2017.10.148

Wang, T., Han, J., Kim, K., Münchinger, A., Gao, Y., Farchi, A., Choe, Y. K., Kreuer, K. D., Bae, C., & Kim, S. (2020a). Suppressing vanadium crossover using sulfonated aromatic ion exchange membranes for high performance flow batteries. Materials Advances, 1(7), 2206–2218. https://doi.org/10.1039/d0ma00508h

Wang, T., Han, J., Kim, K., Münchinger, A., Gao, Y., Farchi, A., Choe, Y. K., Kreuer, K. D., Bae, C., & Kim, S. (2020b). Suppressing vanadium crossover using sulfonated aromatic ion exchange membranes for high performance flow batteries. Materials Advances, 1(7), 2206–2218. https://doi.org/10.1039/d0ma00508h

Wang, T., Jeon, J. Y., Han, J., Kim, J. H., Bae, C., & Kim, S. (2020). Poly(terphenylene) anion exchange membranes with high conductivity and low vanadium permeability for vanadium redox flow batteries (VRFBs). Journal of Membrane Science, 598, 117665. https://doi.org/https://doi.org/10.1016/j.memsci.2019.117665

Wang, W., Luo, Q., Li, B., Wei, X., Li, L., & Yang, Z. (2013a). Recent Progress in Redox Flow Battery Research and Development. Advanced Functional Materials, 23. https://doi.org/10.1002/adfm.201200694

Wang, W., Luo, Q., Li, B., Wei, X., Li, L., & Yang, Z. (2013b). Recent progress in redox flow battery research and development. Advanced Functional Materials, 23(8), 970–986. https://doi.org/10.1002/adfm.201200694

Wang, W., Xu, M., Wang, S., Xie, X., Lv, Y., & Ramani, V. (2022). Bifunctional Cross-Linking Agents Enhance Anion Exchange Membrane Efficacy for Vanadium Redox Flow Batteries. ACS Applied Materials & Interfaces, 14(44), 49446–49453. https://doi.org/10.1021/am501540g

Wu, M., Liu, M., Long, G., Wan, K., Liang, Z., & Zhao, T. S. (2014). A novel high-energy-density positive electrolyte with multiple redox couples for redox flow batteries. Applied Energy, 136, 576–581. https://doi.org/10.1016/j.apenergy.2014.09.076

Xi, J., Xiao, S., Yu, L., Wu, L., Liu, L., & Qiu, X. (2016). Broad temperature adaptability of vanadium redox flow battery—Part 2: Cell research. Electrochimica Acta, 191, 695–704.

Xia, L., Zhang, Q., Wu, C., Liu, Y., Ding, M., Ye, J., Cheng, Y., & Jia, C. (2019). Graphene coated carbon felt as a high-performance electrode for all vanadium redox flow batteries. Surface and Coatings Technology, 358, 153–158. https://doi.org/10.1016/j.surfcoat.2018.11.024

Xiang, Y., & Daoud, W. A. (2018). Cr2O3-modified graphite felt as a novel positive electrode for vanadium redox flow battery. Electrochimica Acta, 290, 176–184. https://doi.org/10.1016/j.electacta.2018.09.023

Xiang, Y., & Daoud, W. A. (2019). Investigation of an advanced catalytic effect of cobalt oxide modification on graphite felt as the positive electrode of the vanadium redox flow battery. Journal of Power Sources, 416, 175–183. https://doi.org/10.1016/j.jpowsour.2019.01.079

Xie, G., Cui, F., Zhao, H., Fan, Z., Liu, S., Pang, B., Yan, X., Du, R., Liu, C., He, G., & Wu, X. (2024). Free-standing COF nanofiber in ion conductive membrane to improve efficiency of vanadium redox flow battery. Journal of Membrane Science, 708. https://doi.org/10.1016/j.memsci.2024.123052

Yang, Y., Wang, Q., Xiong, S., & Song, Z. (2024). Research progress on optimized membranes for vanadium redox flow batteries. In Inorganic Chemistry Frontiers (Vol. 11, Issue 14, pp. 4049–4079). Royal Society of Chemistry. https://doi.org/10.1039/d4qi00520a

Yang, Y., Zhang, Y., Liu, T., & Huang, J. (2018). Improved properties of positive electrolyte for a vanadium redox flow battery by adding taurine. Research on Chemical Intermediates, 44(2), 769–786. https://doi.org/10.1007/s11164-017-3133-y

Yang, Y., Zhang, Y., Liu, T., & Huang, J. (2019). Improved broad temperature adaptability and energy density of vanadium redox flow battery based on sulfate-chloride mixed acid by optimizing the concentration of electrolyte. Journal of Power Sources, 415, 62–68. https://doi.org/https://doi.org/10.1016/j.jpowsour.2019.01.049

Yang, Y., Zhang, Y., Tang, L., Liu, T., Peng, S., & Yang, X. (2020). Improved energy density and temperature range of vanadium redox flow battery by controlling the state of charge of positive electrolyte. Journal of Power Sources, 450. https://doi.org/10.1016/j.jpowsour.2019.227675

Ye, R., Henkensmeier, D., Yoon, S. J., Huang, Z., Kim, D. K., Chang, Z., Kim, S., & Chen, R. (2017). Redox Flow Batteries for Energy Storage: A Technology Review. Journal of Electrochemical Energy Conversion and Storage, 15, 010801. https://doi.org/10.1115/1.4037248

Yu, S., Yue, X., Holoubek, J., Xing, X., Pan, E., Pascal, T., & Liu, P. (2021). A low-cost sulfate-based all iron redox flow battery. Journal of Power Sources, 513. https://doi.org/10.1016/j.jpowsour.2021.230457

Yu, Z., Jia, X., Cai, Y., Su, R., Zhu, Q., Zhao, T., & Jiang, H. (2024). Electrolyte engineering for efficient and stable vanadium redox flow batteries. Energy Storage Materials, 69, 103404. https://doi.org/https://doi.org/10.1016/j.ensm.2024.103404

Yun, S., Parrondo, J., & Ramani, V. (2014). Derivatized cardo-polyetherketone anion exchange membranes for all-vanadium redox flow batteries. Journal of Materials Chemistry A, 2(18), 6605–6615. https://doi.org/10.1039/C4TA00166D

Zendehnam, A., Arabzadegan, M., Hosseini, S. M., Robatmili, N., & Madaeni, S. S. (2013). Fabrication and modification of polyvinylchloride based heterogeneous cation exchange membranes by simultaneously using Fe-Ni oxide nanoparticles and Ag nanolayer: Physico-chemical and antibacterial characteristics. Korean Journal of Chemical Engineering, 30(6), 1265–1271. https://doi.org/10.1007/s11814-013-0063-2

Zeng, J., Jiang, C., Wang, Y., Chen, J., Zhu, S., Zhao, B., & Wang, R. (2008). Studies on polypyrrole modified nafion membrane for vanadium redox flow battery. Electrochemistry Communications, 10(3), 372–375. https://doi.org/10.1016/j.elecom.2007.12.025

Zeng, Y. K., Zhao, T. S., An, L., Zhou, X. L., & Wei, L. (2015). A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. Journal of Power Sources, 300, 438–443.

Zeng, Y. K., Zhou, X. L., Zeng, L., Yan, X. H., & Zhao, T. S. (2016). Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields. Journal of Power Sources, 327, 258–264. https://doi.org/10.1016/j.jpowsour.2016.07.066

Zhang, D., Xin, L., Xia, Y., Dai, L., Qu, K., Huang, K., Fan, Y., & Xu, Z. (2021). Advanced Nafion hybrid membranes with fast proton transport channels toward high-performance vanadium redox flow battery. Journal of Membrane Science, 624, 119047. https://doi.org/https://doi.org/10.1016/j.memsci.2020.119047

Zhang, H., Tan, Y., Li, J., & Xue, B. (2017). Studies on properties of rayon- and polyacrylonitrile-based graphite felt electrodes affecting Fe/Cr redox flow battery performance. In Electrochimica Acta (Vol. 248, pp. 603–613). Elsevier Ltd. https://doi.org/10.1016/j.electacta.2017.08.016

Published

2025-12-31

How to Cite

Ahmed, S., Abdullah, I., & Krisnandi, Y. K. (2025). Increasing energy density of vanadium redox flow batteries: A comprehensive review. Environmental and Materials, 3(2). https://doi.org/10.61511/eam.v3i2.2025.1828

Issue

Section

Articles

Citation Check