Comparison of combustion emissions between manual and machine set methods to reduce carbon monoxide (CO) in briquette manufacturing

Authors

  • Ega Nugraha Firdaus Study Program of Engineering Technology Management, Politeknik Manufaktur Bandung, Bandung, West Java 40135, Indonesia
  • Ayu Wulandari Study Program of Manufacturing Engineering Technology, Politeknik Manufaktur Bandung, Bandung, West Java 40135, Indonesia
  • Silvia Fauzia Marreta Study Program of Manufacturing Engineering Technology, Politeknik Manufaktur Bandung, Bandung, West Java 40135, Indonesia
  • Farah Aqila Mahfudzah Nasution Study Program of Engineering Technology Management, Politeknik Manufaktur Bandung, Bandung, West Java 40135, Indonesia

DOI:

https://doi.org/10.61511/whem.v2i2.2025.2254

Keywords:

briket, rice husk, energy

Abstract

Background: Renewable energy from biomass is one solution to reduce dependence on fossil fuels and the impact of carbon emissions. One form of renewable energy from biomass is briquettes. This study aims to analyze the effectiveness of using modern technology in the form of a briquette production machine set consisting of a grinder, extruder, and burner integrated with a wet scrubber innovation to reduce carbon monoxide (CO) emissions from rice husk combustion in the burner machine compared to the manual method. Methods: The research process was carried out through the stages of needs identification, CAD (Computer Aided Design)-based machine design, prototype production, and briquette performance testing using a Non-Dispersive Infrared (NDIR) analyzer. Findings: The test results showed that briquettes produced using the manual method had a higher density of 0.8 g/cm³ and produced an average CO emission of 220 ppm. These findings prove that mechanizing the process improves the physical quality of the briquettes while reducing CO emissions by around 39%. The integration of wet scrubber technology proved to be effective in absorbing additional exhaust gases and strengthening the environmentally friendly aspects of the combustion process. Conclusion: The conclusion of this study confirms that the use of integrated machinery not only improves briquette quality and energy efficiency, but also makes a significant contribution to carbon emission control efforts at the local level. Novelty/Originality of this Article: The novelty of this study lies in its comprehensive analysis comparing manual and mechanized methods using burner machines with integrated wet scrubbers in the context of rice husk briquette production.

References

Ariska, M., Akhsan, H., Muslim, M., Romadoni, M., & Putriyani, F. S. (2022). Prediksi perubahan iklim ekstrem di Kota Palembang dan kaitannya dengan fenomena El Niño-Southern Oscillation (ENSO) berbasis machine learning. JIPFRI (Jurnal Inovasi Pendidikan Fisika dan Riset Ilmiah), 6(2), 79–86. https://doi.org/10.30599/jipfri.v6i2.1611

Bello, R. S., & Onilude, M. A. (2021). Effects of critical extrusion factors on quality of high-density briquettes produced from sawdust admixture. Materials Today: Proceedings, 38, 949–957. https://doi.org/10.1016/j.matpr.2020.05.468

Bianchini, A., Pellegrini, M., Rossi, J., & Saccani, C. (2018). Theoretical model and preliminary design of an innovative wet scrubber for the separation of fine particulate matter produced by biomass combustion in small size boilers. Biomass and Bioenergy, 116, 60–71. https://doi.org/10.1016/j.biombioe.2018.05.011

Damayanti, S. R., & Hendrasarie, N. (2025). Pengujian efektivitas wet scrubber dalam mengurangi emisi karbon monoksida pada proses pembakaran batu bata. Universitas Pembangunan Nasional "Veteran" Jawa Timur. https://repository.upnjatim.ac.id/id/eprint/33919

Darmawan, D., Sudrajat, I., Kahfi, M., Maulana, Z., & Febriyanto, B. (2021). Perencanaan pengumpulan data sebagai identifikasi kebutuhan pelatihan lembaga pelatihan. Journal of Nonformal Education and Community Empowerment, 5(1), 71–78. https://doi.org/10.15294/pls.v5i1.3088

Dhiman, S., & Khamba, J. (2024). Study on the effect of wet scrubbing technique on emissions in a dual-fuel engine. Environmental Science and Pollution Research, 31(10), 12345–12356. https://doi.org/10.1007/s11356-024-33777-x

Dian, K. (2024). Efektivitas penerapan green transition dan kebijakan karbon pada sektor energi: Literature review. Jurnal Riset Akuntansi Mercu Buana, 10(2). https://doi.org/10.26486/jramb.v10i2.4590

Dragusanu, C., Vasile, O., Pirvu, C., Nicolescu, R., Baran, I., & Stanasel, O. (2023). Briquetting of biomass for sustainable fuel production: A review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.09.099

Environmental Protection Agency. (2025). Monitoring by control technique - Wet scrubber for gaseous control. U.S. Environmental Protection Agency. https://www.epa.gov/air-emissions-monitoring-knowledge-base/monitoring-control-technique-wet-scrubber-gaseous-control

Fathia, A. N., Hadianto, A., & Raswatie, F. D. (2024). Strategi mengurangi emisi gas rumah kaca pada budidaya padi di Indonesia. Indonesian Journal of Agricultural Resource and Environmental Economics, 3(1), 49–58. https://doi.org/10.29244/ijaree.v3i1.54757

Fathonah, W., Kusuma, R. I., Wigati, R., Mina, E., & Aditya, M. R. (2023). Pemanfaatan limbah sekam padi menjadi briket sebagai upaya inovasi potensi lokal di Desa Panenjoan. Kacanegara Jurnal Pengabdian Pada Masyarakat, 6(2), 233. https://doi.org/10.28989/kacanegara.v6i2.1581

Gomiero, T. (2016). Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability, 8(3), 281. https://doi.org/10.3390/su8030281

Irma, M. F., & Gusmira, E. (2024). Tingginya kenaikan suhu akibat peningkatan emisi gas rumah kaca di Indonesia. JSSIT: Jurnal Sains dan Sains Terapan, 2(1). https://doi.org/10.30631/jssit.v2i1.4

Irvanto, O., & Sujana, S. (2020). Pengaruh desain produk, pengetahuan produk, dan kesadaran merek terhadap minat beli produk Eiger. Jurnal Ilmiah Manajemen Kesatuan, 8(2), 105–126. https://doi.org/10.37641/jimkes.v8i2.331

Junpen, A., Pansuk, J., Kamnoet, O., Cheewaphongphan, P., & Garivait, S. (2018). Emission of air pollutants from rice residue open burning in Thailand. Atmosphere, 9(11), 449. https://doi.org/10.3390/atmos9110449

Kulikova, M. V., Krylova, A. Y., Zhagfarov, F. G., Krysanova, K. O., & Lapidus, A. L. (2022). Plant biomass as a raw material for producing basic organic synthesis products. Chemistry and Technology of Fuels and Oils, 58(2), 320–326. https://doi.org/10.1007/s10553-022-01387-3

Lanjekar, P. R., & Panwar, N. L. (2025). Design and optimization of water scrubbing system for tar reduction in biomass gasification: A statistical analysis. Oxford Open Energy, 4. https://doi.org/10.1093/ooenergy/oiaf001

Liu, Y. P., Wang, X. S., Zhu, P., Li, G. C., Ni, X. M., & Zhang, J. (2019). Experimental study on gas jet suppressed by water mist: A clean control technique in natural gas leakage incidents. Journal of Cleaner Production, 223, 163–175. https://doi.org/10.1016/j.jclepro.2019.03.107

Pang, L., Yang, Y., Wu, L., Wang, F., & Meng, H. (2019). Effect of particle sizes on the physical and mechanical properties of briquettes. Energies, 12(19), 3618. https://doi.org/10.3390/en12193618

Pilusa, J. T., Huberts, R., & Muzenda, E. (2013). Emissions analysis from combustion of eco-fuel briquettes for domestic applications. Journal of Energy in Southern Africa, 24(4), 47–55. https://doi.org/10.17159/2413-3051/2014/v24i4a314

Piyathissa, S. D. S., Kahandage, P. D., Namgay, Zhang, H., Noguchi, R., & Ahamed, T. (2023). Introducing a novel rice husk combustion technology for maximizing energy and amorphous silica production using a prototype hybrid rice husk burner to minimize environmental impacts and health risk. Energies, 16(3), 1120. https://doi.org/10.3390/en16031120

Polonini, L. F., Petrocelli, D., Parmigiani, S. P., & Lezzi, A. M. (2019). Influence on CO and PM emissions of an innovative burner pot for pellet stoves: An experimental study. Energies, 12(4), 590. https://doi.org/10.3390/en12040590

Pradhan, D., Kumar, S., & Rosen, M. A. (2019). Biomass briquettes as an alternative fuel: A comprehensive review. Energy Technology, 7(10), 1801011. https://doi.org/10.1002/ente.201801011

Purwadinata, S., Wirawanzah, W., Dekayanti, S., & Rosasari, M. (2023). Pemanfaatan limbah kotoran ternak dan sekam padi sebagai bahan baku pupuk organik di Desa Bantulanteh Kecamatan Tarano. Jurnal Pengembangan Masyarakat Lokal, 5(2), 62–68. https://doi.org/10.58406/jpml.v5i2.1060

Puspita, D. (2024). Energi bersih dan terjangkau dalam mewujudkan tujuan pembangunan berkelanjutan (SDGs). Jurnal Sosial dan Sains, 4(3), 271–280. https://doi.org/10.59188/jurnalsosains.v4i3.1245

Quispe, I., Navia, R., & Kahhat, R. (2017). Energy potential from rice husk through direct combustion and fast pyrolysis: A review. Waste Management, 59, 200–210. https://doi.org/10.1016/j.wasman.2016.10.001

Sun, R., Li, G., Yuan, H., Cui, G., & Li, L. (2025). A NDIR CO sensor enhanced by machine learning algorithm applying in gas outburst early warning. Infrared Physics & Technology, 105, 105801. https://doi.org/10.1016/j.infrared.2025.105801

Supriyadi, S., Androva, A., & Dwiprasetyo, P. A. (2021). Rancang bangun filter wet scrubber untuk penurunan temperatur dan pengurangan kandungan tar terhadap hasil syngas proses gasifikasi. Jurnal Aplikasi Teknik dan Vokasi Energi, 2(1). https://doi.org/10.31316/jatve.v2i1.1489

Ramaswamy, K., Jule, L. T., Subramanian, K., & Seenivasan, V. (2022). Reduction of environmental chemicals, toxicity and particulate matter in wet scrubber device to achieve zero emissions. Scientific Reports, 12(1), 9170. https://doi.org/10.1038/s41598-022-13369-w

Rey, J. R. C., Longo, A., Rijo, B., Pedrero, C. M., Tarelho, L. A. C., Brito, P. S. D., & Nobre, C. (2024). A review of cleaning technologies for biomass-derived syngas. Fuel, 377, 132776. https://doi.org/10.1016/j.fuel.2024.132776

Sapthu, A. (2023). Listrik dan pengaruhnya terhadap pertumbuhan ekonomi di Provinsi Maluku. Jurnal Cita Ekonomika, 17(2), 199–207. https://doi.org/10.51125/citaekonomika.v17i2.11315

Sihotang, F. M. P. (2025). Kontribusi aktor non-negara terhadap lingkungan global melalui implementasi pasar karbon: Penerapan Sistem Registri Nasional-Pengendalian Perubahan Iklim di Indonesia. Padjadjaran Journal of International Relations, 7(2), 137–153. https://doi.org/10.24198/padjir.v7i2.62312

Statistics Indonesia. (n.d.). Luas panen, produksi, dan produktivitas padi menurut provinsi (data historis 2010–2020). Badan Pusat Statistik. https://www.bps.go.id/id/statistics-table/2/MTQ5OCMy/luas-panen--produksi--dan-produktivitas-padi-menurut-provinsi.html

Sugiharto, A. (2021). Pembuatan briket ampas tebu dan sekam padi menggunakan metode pirolisis sebagai energi alternatif. Jurnal Inovasi Teknik Kimia, 6(1). https://doi.org/10.31942/inteka.v6i1.4449

Suryatini, F., Pancono, S., Bhaskoro, S. B., & Muljono, P. M. S. (2021). Sistem kendali nutrisi hidroponik berbasis fuzzy logic berdasarkan objek tanam. Elkomika: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 9(2), 263. https://doi.org/10.26760/elkomika.v9i2.263

Sutanhaji, A. T., Anugroho, F., & Ramadhina, P. G. (2018). Pemetaan distribusi emisi gas karbon dioksida (CO₂) dengan sistem informasi geografis (SIG) pada Kota Blitar. Jurnal Sumberdaya Alam dan Lingkungan, 5(1), 34–42. https://doi.org/10.21776/ub.jsal.2018.005.01.5

Tjiwidjaja, H., & Salima, R. (2023). Dampak energi fosil terhadap perubahan iklim dan solusi berbasis energi hijau. Jurnal Wilayah, Kota dan Lingkungan Berkelanjutan, 2(2), 166–172. https://doi.org/10.58169/jwikal.v2i2.625

World Resources Institute. (2021). World greenhouse gas emissions by sector and end use. Climate Watch. https://www.wri.org/data/world-greenhouse-gas-emissions-2021

Yoro, K. O., & Daramola, M. O. (2020). CO₂ emission sources, greenhouse gases, and the global warming effect. Advances in Carbon Capture, 1(1), 3–28. https://doi.org/10.1016/b978-0-12-819657-1.00001-3

Downloads

Published

2025-08-31

How to Cite

Firdaus, E. N., Wulandari, A., Marreta, S. F., & Nasution, F. A. M. (2025). Comparison of combustion emissions between manual and machine set methods to reduce carbon monoxide (CO) in briquette manufacturing. Waste Handling and Environmental Monitoring, 2(2), 91–112. https://doi.org/10.61511/whem.v2i2.2025.2254

Issue

Section

Articles

Citation Check