A remote-controlled IoT solution for environmental automation in broiler poultry housing: Enhancing welfare under unstable power conditions
DOI:
https://doi.org/10.61511/seesdgj.v3i1.2025.1976Keywords:
IoT systems, broiler poultry, temperature monitoring, lighting automation, Arduino Uno, NodeMCUAbstract
Background: Broiler chickens are highly sensitive to temperature changes due to their inability to sweat, making them vulnerable to heat stress and respiratory illnesses. Manual monitoring methods are inadequate in maintaining optimal environmental conditions, especially in regions with unstable power supply. This study addresses the need for an autonomous system to regulate temperature and lighting in poultry housing. Methods: An IoT-based solution was developed using Arduino Uno and NodeMCU ESP8266 microcontrollers, coupled with a DHT11 temperature and humidity sensor. The system employed incandescent lamps for heating and axial fans for cooling, activated based on temperature thresholds. Real-time data were displayed on an LCD and transmitted to the Blynk mobile application for remote access. A 12V battery and inverter ensured continuous operation during power outages. Findings: The system maintained stable temperature conditions between 31°C and 34°C. When the temperature dropped below 31°C, the lamp activated; when it rose above 34°C, the fan turned on. Data were reliably recorded and displayed over a 24-hour period. All hardware components functioned effectively, and system performance was consistent even during transitions to backup power. Conclusion: This research confirms the effectiveness of a low-cost IoT-based system for automated environmental control in broiler poultry housing. The system provides a reliable, remote-controlled solution that improves animal welfare, minimizes manual labor, and ensures operational resilience in power-limited settings. Novelty: The proposed system combines real-time environmental monitoring, remote access, and automated actuation with a backup power feature in a compact and affordable design. It is specifically tailored for small-scale poultry operations in developing regions, filling a critical gap in accessible precision farming tools.
References
Ayeni, P. O., & Adesoba, O. C. (2025). IoT-based home control system using NodeMCU and Firebase. Journal of Edge Computing, 4(1), 17–34. https://doi.org/10.55056/jec.814
Bagyam, L. N. M, J. S, R. S, V. T, & V. S. (2024). Implementation of Temperature and Moisture Controller in Poultry Using IoT. 2024 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT), 126–130. https://doi.org/10.1109/IDCIoT59759.2024.10467836
Chigwada, J., Mazunga, F., Nyamhere, C., Mazheke, V., & Taruvinga, N. (2022). Remote poultry management system for small to medium scale producers using IoT. Scientific African, 18, e01398. https://doi.org/10.1016/j.sciaf.2022.e01398
Dochev, M. I. Dochev, L. Docheva, & S. Manev. (2024). Wireless Measurement Station Using Arduino. 2024 32nd National Conference with International Participation (TELECOM), 1–4. https://doi.org/10.1109/TELECOM63374.2024.10812329
Godinho, A., Vicente, R., Silva, S., & Coelho, P. J. (2025). Wireless Environmental Monitoring and Control in Poultry Houses: A Conceptual Study. IoT, 6(2). https://doi.org/10.3390/iot6020032
Gomathi, S., & Renuka, M. D. (2024). Onion Smart Storage System using IoT Humidity Sensor (DHT11), Gas Sensor(MQ-6). 2024 5th International Conference on Smart Electronics and Communication (ICOSEC), 1–5. https://doi.org/10.1109/ICOSEC61587.2024.10722444
Hasibuan, A., Rita Sovianto, Ezwarsyah, Asri, Taufiq, & M. Sayuti. (2024). Type Design of Control System in Hydroponic Plants Based on Arduino Uno. Proceedings of International Conference on Multidisciplinary Engineering (ICOMDEN), 2, 00080.
Jalil, A. M. A., Mohamad, R., Anas, N. M., Kassim, M., & Suliman, S. I. (2021). Implementation of vehicle ventilation system using NodeMCU ESP8266 for remote monitoring. Bulletin of Electrical Engineering and Informatics; Vol 10, No 1: February 2021. https://doi.org/10.11591/eei.v10i1.2669
Kpomasse, C. C., Oke, O. E., Houndonougbo, F. M., & Tona, K. (2021). Broiler production challenges in the tropics: A review. Veterinary Medicine and Science, 7(3), 831–842. https://doi.org/10.1002/vms3.435
Li, C., Wang, J., Wang, S., & Zhang, Y. (2024). A review of IoT applications in healthcare. Neurocomputing, 565, 127017. https://doi.org/10.1016/j.neucom.2023.127017
Mujmule, P. V. Avhad, S. Joshi, R. Muli, & K. Kshirsagar. (2024). Uninterrupted Clock Using GPS, DS3231 RTC & NTP Pool Server. 2024 International Conference on IoT Based Control Networks and Intelligent Systems (ICICNIS), 709–714. https://doi.org/10.1109/ICICNIS64247.2024.10823195
Mumbelli, A. R. C. Brito, V. Pegorini, & L. F. Priester. (2020). Low Cost IoT-Based System for Monitoring and Remote Controlling Aviaries. 2020 3rd International Conference on Information and Computer Technologies (ICICT), 531–535. https://doi.org/10.1109/ICICT50521.2020.00090
Muthekar, D. S. K. V. Gadekar, A. M. Deulkar, & D. B. Pardeshi. (2024). Smart Irrigation System using ESP8266, NodeMCU & ThingSpeak. 2024 8th International Conference on Inventive Systems and Control (ICISC), 630–634. https://doi.org/10.1109/ICISC62624.2024.00110
Modi, S. M. Modi, V. Alone, A. Mohite, V. K. Borate, & Y. K. Mali. (2024). Smart shopping trolley Using Arduino UNO. 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–6. https://doi.org/10.1109/ICCCNT61001.2024.10725524
Oliveira, F. T. de, Santos, S. H. A. dos, Matos, R. P. de, & Farias, F. O. M. (2025). Use of DHT11 Sensor and ESP32-Wroom Microcontroller to Monitor the Productive Performance of Isa Brown Laying Hens in a Farm in the City Of Parintins. Revista de Gestão Social e Ambiental, 19(4), e012021. https://doi.org/10.24857/rgsa.v19n4-110
Orakwue, S. I., Al-Khafaji, H. M. R., & Chabuk, M. (2022). IoT Based Smart Monitoring System for Efficient Poultry Farming. Webology, 19, 4105–4112. http://dx.doi.org/10.14704/WEB/V19I1/WEB19270
Pereira, W. F., Fonseca, L. da S., Putti, F. F., Góes, B. C., & Naves, L. de P. (2020). Environmental monitoring in a poultry farm using an instrument developed with the internet of things concept. Computers and Electronics in Agriculture, 170, 105257. https://doi.org/10.1016/j.compag.2020.105257 Puspa, F., Fahrurrozi, I., Satya, T., Setyawan, G., & Al Fauzan, M. (2018). Prototipe Sistem Kendali Suhu dan Kelembaban Kandang Ayam Broiler Melalui Blynk Server Berbasis Android. Wahana Fisika, 3, 143. https://doi.org/10.17509/wafi.v3i2.14060
Rachmanto, R., Juwana, W., Akbar, A., Prasetyo, S., Bangun, W., & Arifin, Z. (2023). Economic Analysis of On-Grid Photovoltaic-Generator Hybrid Energy Systems for Rural Electrification in Indonesia. International Journal of Sustainable Development and Planning, 18, 2967–2973. https://doi.org/10.18280/ijsdp.180935
Rehiara, A. B., & Rumengan, Y. (2021). Arduino-based PLTS and PLN Hybrid Controller Design: Perancangan Pengontrol Hibrid PLTS dan PLN Berbasis Arduino. Procedia of Engineering and Life Science, 1(1). https://doi.org/10.21070/pels.v1i1.806
Rehiara, A. B., Rumengan, Y., & Sarungallo, P. (2023). An extended IoT system for real-time solar power monitoring. AIP Conference Proceedings, 2590(1), 030003. https://doi.org/10.1063/5.0106261
Reshma, K., & Rajmohan, V. (2025). Data logging system to detect the real clock time and location for trekkers using Ds3231 RTC sensor in comparison with Ds1307 sensor. AIP Conference Proceedings, 3252(1), 020004. https://doi.org/10.1063/5.0259538
Rikwan, R., & Ma’arif, A. (2023). DC Motor Rotary Speed Control with Arduino UNO Based PID Control. Control Systems and Optimization Letters; Vol 1, No 1 (2023)DO- 10.59247/Csol.V1i1.6. https://ejournal.csol.or.id/index.php/csol/article/view/6
Saini, M. L. R. Kumar, D. C. Sati, & T. Bharti. (2024). Fire Monitoring and Prevention System Based on the Severity of Fire Using NodeMCU and Cloud. 2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), 1–6. https://doi.org/10.1109/IITCEE59897.2024.10467602
Satria, B., Rahmaniar, R., Dalimunthe, M. E., Iqbal, M., & Berthauli, S. (2025). A development IoT-based real-time weather monitoring system using NodeMCU ESP32 and BMP280-DHT11 sensor. INFOKUM, 13(03), 698–710. https://seaninstitute.org/infor/index.php/infokum/article/view/2838
Sitaram, K. A. K. R. Ankush, K. N. Anant, & B. R. Raghunath. (2018). IoT based Smart Management of Poultry Farm and Electricity Generation. 2018 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), 1–4. https://doi.org/10.1109/ICCIC.2018.8782308
Sumiati, Fadilah, R., Darmawan, A., & Nadia, R. (2025). - Invited Review—Challenges and constraints to the sustainability of poultry farming in Indonesia. Animal Bioscience, 38(4), 802–817. https://doi.org/10.5713/ab.24.0678
Vijayaraja, L. R. Dhanasekar, R. Premkumar, M. V, S. K, & R. Kesavan. (2023). IoT based Modern Poultry House with Enhanced Accuracy. 2023 2nd International Conference on Edge Computing and Applications (ICECAA), 1302–1306. https://doi.org/10.1109/ICECAA58104.2023.10212155
Vijay, A. T. Garg, V. Goyal, Rashmi, A. Yadav, & R. Mukherjee. (2023). A Low-Cost Edge-IoT Based Smart Poultry Farm. 2023 15th International Conference on COMmunication Systems & NETworkS (COMSNETS), 397–399. https://doi.org/10.1109/COMSNETS56262.2023.10041317
Xu, J., Gu, B., & Tian, G. (2022). Review of agricultural IoT technology. Artificial Intelligence in Agriculture, 6, 10–22. https://doi.org/10.1016/j.aiia.2022.01.001
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Satriadi Bin Abdi, Abdul Zaid Patiran, Adelhard Rehiara

This work is licensed under a Creative Commons Attribution 4.0 International License.