GreenLoops: Revolutionizing sorghum biomass into clean energy via a smart agro-industrial ecosystem

Authors

  • Hesti Indriani Department of Actuarial Science, School of Data Science Mathematics and Informatics, IPB University, Bogor, West Java, 1668, Indonesia
  • Ikhsan Muttaqin Department of Agroindustry Engineering, Faculty of Agricultural Technology, IPB University, Bogor, West Java, 16680, Indonesia
  • Bintang Yolanda S. Simanjuntak Department of Geophysics and Meteorology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, West Java, 16680, Indonesia
  • Taufik Department of Actuarial Science, School of Data Science Mathematics and Informatics, IPB University, Bogor, West Java, 16680, Indonesia

DOI:

https://doi.org/10.61511/safses.v2i2.2025.2484

Keywords:

agroindustry, biomass, E-cowaste, Smartbriq, Sorcast

Abstract

Background: Indonesia’s agricultural sector generates more than 150 million tons of biomass waste annually, making up nearly 60% of the country’s organic waste and many farmers burn it openly. Although inexpensive, this practice accelerates greenhouse gas emissions and worsens environmental degradation. This research aims to develop an integrated technological approach for agro-industrial waste management that minimizes emissions, creates economic value, and promotes circular economy principles in support of Indonesia’s net-zero emission target. Methods: This study employs a mixed-method approach by integrating Internet of Things (IoT), Artificial Intelligence (AI), and Augmented Reality (AR) technologies. The system consists of Sorcast, an intelligent forecasting tool using Random Forest and LSTM models to predict sorghum yield and biomass composition; Smartbriq, an AR-based application that provides step-by-step guidance for producing biomass briquettes; and E-Cowaste, a digital marketplace that facilitates traceable biomass waste transactions with features such as carbon calculators, smart contracts, and certification mechanisms. Findings: Results show that the integrated system, referred to as SWTS, enhances resource efficiency and significantly reduces greenhouse gas emissions by enabling predictive analytics and real-time monitoring. Smartbriq increases farmer engagement by simplifying briquette production, while E-Cowaste improves transparency and accountability in biomass trading. Conclusion: The findings suggest that integrated digital systems provide an effective alternative to reducing agricultural waste, mobilize farmers toward sustainable practices, and generate both economic and environmental benefits. Novelty/Originality of this article: The novelty lies in combining AI-based forecasting, AR-assisted briquette production, and blockchain-enabled waste trading into a unified, scalable model for transforming agricultural waste sustainably in Indonesia.

References

Ahmed, M., Khan, S., & Ali, N. (2024). IoT in grain drying: A case study from Pakistan. Computers and Electronics in Agriculture, 215, Article 106234. https://doi.org/10.1016/j.compag.2023.107469

BPS. (2024). Food crop production statistics Indonesia 2023. Badan Pusat Statistik

Bello, O., Adeyemi, J., & Oladele, O. (2021). Sorghum biomass productivity under varying irrigation regimes. Journal of Arid Environments, 187, Article 104412. https://doi.org/10.1016/j.jaridenv.2020.104412

Chen, L., Zhang, Y., & Liu, X. (2022). Bioconversion of sorghum stover into bioethanol: A review. Renewable and Sustainable Energy Reviews, 158, Article 112143. https://doi.org/10.1016/j.rser.2022.112143

D’Amato, R., Pinto, M., & Serrano, F. (2022). Small-scale biogas systems in Mediterranean agriculture. Biomass and Bioenergy, 162, Article 106142. https://doi.org/10.1016/j.biombioe.2021.106142

Ellen MacArthur Foundation. (2023). Circular economy principles: A guide for industry. Ellen MacArthur Foundation. https://ellenmacarthurfoundation.org/

FAO. (2022). Sorghum and millet production guide in drylands. FAO. https://www.fao.org/publications

García, A., Martínez, C., & López, D. (2021). Circular agriculture in EU farming systems. Sustainability, 13(4), Article 1890. https://doi.org/10.3390/su13041890

IEA. (2021). Renewable energy for industry: Biomass use in emerging economies. https://www.iea.org/reports/renewable-energy-for-industry

Liu, Z., Wang, H., & Zhao, J. (2024). Fuzzy AHP for green building assessment in China. Journal of Cleaner Production, 431, Article 139421. https://doi.org/10.1016/j.jclepro.2023.139421

Ministry of Agriculture RI. (2023). Sorghum harvested area and production data 2023. Ministry of Agriculture of the Republic of Indonesia. https://www.pertanian.go.id

Nur, M., Rahman, T., & Aziz, S. (2023). Climate resilience in farming communities using fuzzy logic. Environmental Modelling & Software, 162, Article 105678. https://doi.org/10.1016/j.envsoft.2023.105678

Nurhayati, S., Ramadhan, A., & Wibowo, T. (2024). Karakteristik briket dari limbah batang sorgum menggunakan perekat alami. Jurnal Energi Terbarukan dan Lingkungan, 12(1), 25–34. https://doi.org/10.55393/jetl.v12i1.151

Permana, L. T., Karlina, V., Hartini, B., & Japa, L. (2021). Pemanfaatan tanaman Sorgum di Desa Tanak Beak, Kecamatan Batukliang Utara, Kabupaten Lombok Tengah. Jurnal Pengabdian Magister Pendidikan IPA, 4(3), 248–252. https://doi.org/10.29303/jpmpi.v4i3.738

Rahman, M., & Islam, M. (2023). Blockchain for halal supply chain traceability. International Journal of Logistics Research and Applications, 26(3), 245–260. https://doi.org/10.1080/13675567.2021.1981882

Rahman, T., & Hasan, M. (2023). Farm-to-fuel models in South Asia. Energy for Sustainable Development, 74, 112–123. https://doi.org/10.1016/j.esd.2023.03.003

Rahmawati, D., Hidayah, L., & Putra, R. (2024). Analisis tantangan dalam hilirisasi biomassa pertanian. Jurnal Inovasi Agroindustri Indonesia, 7(2), 55–63. https://doi.org/10.37058/jiai.v7i2.11584

Setyawan, M., Hidayat, A., & Lestari, D. (2023). Potensi biomassa sorgum sebagai energi terbarukan di lahan kering Indonesia. Jurnal Agroindustri Berkelanjutan, 8(2), 110–118. https://doi.org/10.33021/jab.v8i2.4172

Sharma, P., & Singh, R. (2023). AHP in supply chain sustainability. International Journal of Production Economics, 257, Article 108456. https://doi.org10.1016/j.ijpe.2022.108456

Wang, Q., Li, T., & Zhou, W. (2023). Steam explosion pre-treatment of sorghum biomass. Bioresource Technology, 370, Article 128234. https://doi.org/10.1016/j.biortech.2022.128234

Zhang, Y., Wu, X., & Huang, L. (2021). AHP-based land use planning in rural China. Land Use Policy, 109, Article 105612. https://doi.org/10.1016/j.landusepol.2021.105612

Downloads

Published

2025-08-31

How to Cite

Indriani, H., Muttaqin, I., Simanjuntak, B. Y. S., & Taufik. (2025). GreenLoops: Revolutionizing sorghum biomass into clean energy via a smart agro-industrial ecosystem. Social Agriculture, Food System, and Environmental Sustainability, 2(2), 151–167. https://doi.org/10.61511/safses.v2i2.2025.2484

Issue

Section

Articles

Citation Check