Assessing the vulnerability of urban areas to the urban heat island phenomenon: Strategies for effective mitigation and sustainable urban planning

Authors

  • Pricilia Chika Alexandra School of Environmental Science, Universitas Indonesia, Central Jakarta, Jakarta 10430, Indonesia
  • Yonathan Philip School of Environmental Science, Universitas Indonesia, Central Jakarta, Jakarta 10430, Indonesia

DOI:

https://doi.org/10.61511/jpstd.v2i2.2025.1487

Keywords:

anthropogenic emissions, low vegetation, mitigation, surface albedo, urban heat islands, urbanization

Abstract

Background: Urban Heat Island (UHI) is a phenomenon that causes significant temperature differences between urban areas and surrounding suburban or rural areas. This phenomenon can be found even in medium to small-sized cities and is measured based on the temperature difference between urban and rural areas. Methods: This study employs a systematic literature review to analyze research on urban heat islands and applied mitigation strategies. The review follows a structured process, including selection criteria based on albedo, vegetation area, and anthropogenic factors, to identify and classify relevant case studies. The analysis focuses on three mitigation approaches: reducing urban albedo, increasing vegetation, and reducing anthropogenic heat emissions. Findings: In cities, urban heat islands are influenced by factors such as building density, the nature of roads and building surface materials that store heat, lack of green land, and activities carried out in urban areas. With high activity and population density, urban heat islands can cause temperature increases both locally and globally. The increase in temperature in the microclimate in urban areas triggers an increase in death rates due to heat waves, causes discomfort in human activities, and greatly impacts vulnerable groups. This phenomenon will become increasingly widespread due to urbanization which results in urban sprawl which expands urban areas. Conclusion: Urban vulnerability to urban heat islands requires interdisciplinary studies to analyse and develop effective mitigation. The mitigation carried out aims to reduce the negative impact of the urban heat island phenomenon. Novelty/Originality of this article: Three mitigation solutions that can be implemented are reducing urban albedo because albedo can reflect solar radiation, increasing urban vegetation to reduce heat in the surrounding area, and reducing anthropogenic heat emissions by reducing heat emissions from daily activities.

References

Aboelata, A., & Sodoudi, S. (2020). Evaluating the effect of trees on UHI mitigation and reduction of energy usage in different built up areas in Cairo. Building and Environment, 168(August 2019). https://doi.org/10.1016/j.buildenv.2019.106490

Akbari, H., Cartalis, C., Kolokotsa, D., Muscio, A., Pisello, A. L., Rossi, F., Santamouris, M., Synnefa, A., Wong, N. H., & Zinzi, M. (2016). Local climate change and urban heat island mitigation techniques - The state of the art. Journal of Civil Engineering and Management, 22(1), 1–16. https://doi.org/10.3846/13923730.2015.1111934

Akbari, H., Damon Matthews, H., & Seto, D. (2012). The long-term effect of increasing the albedo of urban areas. Environmental Research Letters, 7(2). https://doi.org/10.1088/1748-9326/7/2/024004

Almashhour, R., Kolo, J., & Beheiry, S. (2024). Critical reflections on strategies for mitigating and adapting to urban heat islands. In International Journal of Urban Sustainable Development (Vol. 16, Issue 1, pp. 144–162). Taylor and Francis Ltd. https://doi.org/10.1080/19463138.2024.2350205

Alobaydi, D., Bakarman, M. A., & Obeidat, B. (2016). The Impact of Urban Form Configuration on the Urban Heat Island: The Case Study of Baghdad, Iraq. Procedia Engineering, 145, 820–827. https://doi.org/10.1016/j.proeng.2016.04.107

Alonso, L., & Renard, F. (2020). A Comparative Study of the Physiological and Socio-Economic Vulnerabilities to Heat Waves of the Population of the Metropolis of Lyon (France) in a Climate Change Context. International Journal of Environmental Research and Public Health, 17(3). https://doi.org/10.3390/ijerph17031004

Apreda, C., D’Ambrosio, V., & Di Martino, F. (2019). A climate vulnerability and impact assessment model for complex urban systems. Environmental Science and Policy, 93(August 2018), 11–26. https://doi.org/10.1016/j.envsci.2018.12.016

Asimakopoulos, D. A., Santamouris, M., Farrou, I., Laskari, M., Saliari, M., Zanis, G., Giannakidis, G., Tigas, K., Kapsomenakis, J., Douvis, C., Zerefos, S. C., Antonakaki, T., & Giannakopoulos, C. (2012). Modelling the energy demand projection of the building sector in Greece in the 21st century. Energy and Buildings, 49, 488–498. https://doi.org/10.1016/j.enbuild.2012.02.043

Balany, F., Ng, A. W. M., Muttil, N., Muthukumaran, S., & Wong, M. S. (2020). Green infrastructure as an urban heat island mitigation strategy—a review. In Water (Switzerland) (Vol. 12, Issue 12). MDPI AG. https://doi.org/10.3390/w12123577

Baldinelli, G., Bonafoni, S., Anniballe, R., Presciutti, A., Gioli, B., & Magliulo, V. (2015). Spaceborne detection of roof and impervious surface albedo: Potentialities and comparison with airborne thermography measurements. Solar Energy, 113, 281–294. https://doi.org/10.1016/j.solener.2015.01.011

Battista, G., de Lieto Vollaro, E., Ocłoń, P., & de Lieto Vollaro, R. (2023). Effects of urban heat island mitigation strategies in an urban square: A numerical modelling and experimental investigation. Energy and Buildings, 282. https://doi.org/10.1016/j.enbuild.2023.112809

Biochini, J., Mian, P. G., Natali, A. C. C., & Travassos, Gu. H. (2012). Systematic review in software engineering (Issue May). https://doi.org/10.1145/2372233.2372235

Busato, F., Lazzarin, R. M., & Noro, M. (2014). Three years of study of the Urban Heat Island in Padua: Experimental results. Sustainable Cities and Society, 10, 251–258. https://doi.org/10.1016/j.scs.2013.05.001

Castellani, B., Morini, E., Filipponi, M., Nicolini, A., Palombo, M., Cotana, F., & Rossi, F. (2014). Clathrate hydrates for thermal energy storage in buildings: Overview of proper hydrate-forming compounds. Sustainability (Switzerland), 6(10), 6815–6829. https://doi.org/10.3390/su6106815

Chen, Y., Wang, Y., Zhou, D., Gu, Z., & Meng, X. (2022). Summer urban heat island mitigation strategy development for high-anthropogenic-heat-emission blocks. Sustainable Cities and Society, 87(June). https://doi.org/10.1016/j.scs.2022.104197

Cheng, W., Li, D., Liu, Z., & Brown, R. D. (2021). Approaches for identifying heat-vulnerable populations and locations: A systematic review. Science of the Total Environment, 799, 149417. https://doi.org/10.1016/j.scitotenv.2021.149417

Chow, W. T. L., & Roth, M. (2009). Temporal Dynamics of the Urban Heat Island of Singapore. International Journal of Climatology, 26(March 2008), 2243–2260. https://doi.org/10.1002/joc.1364 TEMPORAL

Cresswell, K., Mitsova, D., Liu, W., Fadiman, M., & Hindle, T. (2023). Gauging Heat Vulnerability in Southeast Florida: A Multimodal Approach Integrating Physical Exposure, Sensitivity, and Adaptive Capacity. ISPRS International Journal of Geo-Information, 12(6). https://doi.org/10.3390/ijgi12060242

Degirmenci, K., Desouza, K. C., Fieuw, W., Watson, R. T., & Yigitcanlar, T. (2021). Understanding policy and technology responses in mitigating urban heat islands: A literature review and directions for future research. In Sustainable Cities and Society (Vol. 70). Elsevier Ltd. https://doi.org/10.1016/j.scs.2021.102873

Dieleman, H. (2013). Organizational learning for resilient cities, through realizing eco-cultural innovations. Journal of Cleaner Production, 50, 171–180. https://doi.org/10.1016/j.jclepro.2012.11.027

Doulos, L., Santamouris, M., & Livada, I. (2004). Passive cooling of outdoor urban spaces. The role of materials. Solar Energy, 77(2), 231–249. https://doi.org/10.1016/j.solener.2004.04.005

Filho, W. L., Echevarria Icaza, L., Neht, A., Klavins, M., & Morgan, E. A. (2018). Coping with the impacts of urban heat islands. A literature based study on understanding urban heat vulnerability and the need for resilience in cities in a global climate change context. Journal of Cleaner Production, 171, 1140–1149. https://doi.org/10.1016/j.jclepro.2017.10.086

Gartland, L. (2011). A Review of “Heat Islands: Understanding and Mitigating Heat in Urban Areas.” Journal of the American Planning Association, 79(3), 256–257. https://doi.org/10.1080/01944363.2013.811377

Han, D., Zhang, T., Qin, Y., Tan, Y., & Liu, J. (2023). A comparative review on the mitigation strategies of urban heat island (UHI): a pathway for sustainable urban development. In Climate and Development (Vol. 15, Issue 5, pp. 379–403). Taylor and Francis Ltd. https://doi.org/10.1080/17565529.2022.2092051

Han, J. (2020). Can urban sprawl be the cause of environmental deterioration? Based on the provincial panel data in China. Environmental Research, 189. https://doi.org/10.1016/j.envres.2020.109954

Hayes, A. T., Jandaghian, Z., Lacasse, M. A., Gaur, A., Lu, H., Laouadi, A., Ge, H., & Wang, L. (2022). Nature-Based Solutions (NBSs) to Mitigate Urban Heat Island (UHI) Effects in Canadian Cities. In Buildings (Vol. 12, Issue 7). MDPI. https://doi.org/10.3390/buildings12070925

He, B. J., Wang, J., Liu, H., & Ulpiani, G. (2021). Localized synergies between heat waves and urban heat islands: Implications on human thermal comfort and urban heat management. Environmental Research, 193. https://doi.org/10.1016/j.envres.2020.110584

Hooshangi, H. R., Akbari, H., & Touchaei, A. G. (2016). Measuring solar reflectance of variegated flat roofing materials using quasi-Monte Carlo method. Energy and Buildings, 114(October), 234–240. https://doi.org/10.1016/j.enbuild.2015.06.073

Hsieh, C. M., & Huang, H. C. (2016). Mitigating urban heat islands: A method to identify potential wind corridor for cooling and ventilation. Computers, Environment and Urban Systems, 57, 130–143. https://doi.org/10.1016/j.compenvurbsys.2016.02.005

Iqbal, N., Ravan, M., Jamshed, A., Birkmann, J., Somarakis, G., Mitraka, Z., & Chrysoulakis, N. (2022). Linkages between Typologies of Existing Urban Development Patterns and Human Vulnerability to Heat Stress in Lahore. Sustainability (Switzerland), 14(17). https://doi.org/10.3390/su141710561

Irfeey, A. M. M., Chau, H. W., Sumaiya, M. M. F., Wai, C. Y., Muttil, N., & Jamei, E. (2023). Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas. Sustainability (Switzerland), 15(14). https://doi.org/10.3390/su151410767

Johnson, D. P., & Lulla, V. (2012). Intra-urban variations in vulnerability associated with extreme heat events in relationship to a changing climate.

Kalisch, A., Porsché, I., Rolker, D., Bhatt, S., & Tomar, S. (2014). A Framework for Climate Change Vulnerability Assessments. Project on Climate Change Adaptation in Rural Areas of India (CCA RAI). Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ).

Kamal-chaoui, L., Robert, A., & Q, J. E. L. C. (2009). Competitive Cities and Climate Change. Development, October, 172. http://www.forum15.org.il/art_images/files/103/COMPETITIVE-CITIES-CLIMATE-CHANGE.pdf

Khare, V. R., Vajpai, A., & Gupta, D. (2021). A big picture of urban heat island mitigation strategies and recommendation for India. Urban Climate, 37. https://doi.org/10.1016/j.uclim.2021.100845

Kim, S. W., & Brown, R. D. (2021). Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. In Science of the Total Environment (Vol. 779). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2021.146389

Kikegawa, Y., Genchi, Y., Kondo, H., & Hanaki, K. (2006). Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building’s energy-consumption for air-conditioning. Applied Energy, 83(6), 649–668. https://doi.org/10.1016/j.apenergy.2005.06.001

Kisvarga, S., Horotán, K., Wani, M. A., & Orlóci, L. (2023). Plant Responses to Global Climate Change and Urbanization: Implications for Sustainable Urban Landscapes. In Horticulturae (Vol. 9, Issue 9). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/horticulturae9091051

Kolokotroni, M., & Giridharan, R. (2008). Urban heat island intensity in London: An investigation of the impact of physical characteristics on changes in outdoor air temperature during summer. Solar Energy, 82(11), 986–998. https://doi.org/10.1016/j.solener.2008.05.004

Koralegedara, S. B., Lin, C. Y., Sheng, Y. F., & Kuo, C. H. (2016). Estimation of anthropogenic heat emissions in urban Taiwan and their spatial patterns. Environmental Pollution, 215, 84–95. https://doi.org/10.1016/j.envpol.2016.04.055

Li, F., Yigitcanlar, T., Nepal, M., Thanh, K. N., & Dur, F. (2022). Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review. In Energies (Vol. 15, Issue 19). MDPI. https://doi.org/10.3390/en15196998

Marando, F., Heris, M. P., Zulian, G., Udías, A., Mentaschi, L., Chrysoulakis, N., Parastatidis, D., & Maes, J. (2022). Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustainable Cities and Society, 77. https://doi.org/10.1016/j.scs.2021.103564

McCarthy, M. P., & Sanderson, M. G. (2011). Urban Heat Islands: Sensitivity of Urban Temperatures to Climate Change and Heat Release in Four European Cities. Cities and Climate Change, 175–191. https://doi.org/10.1596/9780821384930_ch07

Mei, S. J., Liu, C. W., Liu, D., Zhao, F. Y., Wang, H. Q., & Li, X. H. (2016). Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications. Science of the Total Environment, 565, 1102–1115. https://doi.org/10.1016/j.scitotenv.2016.05.150

Mei, S. J., & Yuan, C. (2021). Analytical and numerical study on transient urban street air warming induced by anthropogenic heat emission. Energy and Buildings, 231. https://doi.org/10.1016/j.enbuild.2020.110613

Melis, G., Gangi, E. Di, Ellena, M., Zengarini, N., Ricciardi, G., Mercogliano, P., & Costa, G. (2023). Urban Heat Island effect and social vulnerability in Turin: Prioritizing climate change mitigation action with an equity perspective. https://doi.org/10.1016/j

Mihalakakou, G., Flocas, H. A., Santamouris, M., & Helmis, C. G. (2002). Application of neural networks to the simulation of the heat island over Athens, Greece, using synoptic types as a predictor. Journal of Applied Meteorology, 41(5), 519–527. https://doi.org/10.1175/1520-0450(2002)041<0519:AONNTT>2.0.CO;2

Mills, G. (2006). Progress toward sustainable settlements: A role for urban climatology. Theoretical and Applied Climatology, 84(1–3), 69–76. https://doi.org/10.1007/s00704-005-0145-0

Morini, E., Touchaei, A. G., Castellani, B., Rossi, F., & Cotana, F. (2016). The impact of albedo increase to mitigate the urban heat island in Terni (Italy) using the WRF model. Sustainability (Switzerland), 8(10), 1–15. https://doi.org/10.3390/su8100999

Muñoz-Pizza, D. M., Sanchez-Rodriguez, R. A., & Gonzalez-Manzano, E. (2023). Linking climate change to urban planning through vulnerability assessment: The case of two cities at the Mexico-US border. Urban Climate, 51. https://doi.org/10.1016/j.uclim.2023.101674

Nishida, A. K., & Braga, J. C. (2015). Systematic review of literature: Educational games about electric energy consumption. Proceedings - Frontiers in Education Conference, FIE, 2015, 1–8. https://doi.org/10.1109/FIE.2015.7344075

O’Malley, C., Piroozfar, P., Farr, E. R. P., & Pomponi, F. (2015). Urban Heat Island (UHI) mitigating strategies: A case-based comparative analysis. Sustainable Cities and Society, 19, 222–235. https://doi.org/10.1016/j.scs.2015.05.009

Oke, T. R. (2017). Urban Climates. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781139016476

Paulina, W., Poh-Chin, L., & Melissa, H. (2015). Temporal Statistical Analysis of Urban Heat Islands at the Microclimate Level. Procedia Environmental Sciences, 26, 91–94. https://doi.org/10.1016/j.proenv.2015.05.006

Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F. M., Nan, H., Zhou, L., & Myneni, R. B. (2012). Surface urban heat island across 419 global big cities. Environmental Science and Technology, 46(2), 696–703. https://doi.org/10.1021/es2030438

Piracha, A., & Chaudhary, M. T. (2022). Urban Air Pollution, Urban Heat Island and Human Health: A Review of the Literature. Sustainability (Switzerland), 14(15). https://doi.org/10.3390/su14159234

Ramly, N., Rohaizat Hassan, M., Hasni Jaafar, M., Ismail, R., Isa, Z., & Hod, R. (n.d.). Identifying Vulnerable Population in Urban Heat Island: A Literature Review. https://www.insightsonindia.com

Rinner, C., Patychuk, D., Bassil, K., Nasr, S., Gower, S., & Campbell, M. (2010). The role of maps in neighborhood-level heat vulnerability assessment for the city of toronto. Cartography and Geographic Information Science, 37(1), 31–44. https://doi.org/10.1559/152304010790588089

Rizwan, A. M., DENNIS, L. Y. C., & LIU, C. (2008). A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences, 20(1), 120–128. https://doi.org/10.1016/S1001-0742(08)60019-4

Rosenfeld, A. H., Akbari, H., Bretz, S., Fishman, B. L., Kurn, D. M., Sailor, D., & Taha, H. (1995). Mitigation of urban heat islands: materials, utility programs, updates. Energy and Buildings, 22(3), 255–265. https://doi.org/10.1016/0378-7788(95)00927-P

Rossi, F., Morini, E., Castellani, B., Nicolini, A., Bonamente, E., Anderini, E., & Cotana, F. (2015). Beneficial effects of retroreflective materials in urban canyons: Results from seasonal monitoring campaign. Journal of Physics: Conference Series, 655(1). https://doi.org/10.1088/1742-6596/655/1/012012

Santamouris, M. (2014). On the energy impact of urban heat island and global warming on buildings. Energy and Buildings, 82, 100–113. https://doi.org/10.1016/j.enbuild.2014.07.022

Sarkodie, S. A., Owusu, P. A., & Leirvik, T. (2020). Global effect of urban sprawl, industrialization, trade and economic development on carbon dioxide emissions. Environmental Research Letters, 15(3). https://doi.org/10.1088/1748-9326/ab7640

Schneiderbauer, S., Calliari, E., Eidsvig, U., & Hagenlocher, M. (2017). The most recent view of vulnerability. Understanding Disaster Risk: Risk Assessment Methodologies and Examples, June, 1–27. https://drmkc.jrc.ec.europa.eu/portals/0/Knowledge/ScienceforDRM/ch02/ch02_subch0203.pdf

Semenzato, P., & Bortolini, L. (2023). Urban Heat Island Mitigation and Urban Green Spaces: Testing a Model in the City of Padova (Italy). Land, 12(2). https://doi.org/10.3390/land12020476

Sidiqui, P., Roös, P. B., Herron, M., Jones, D. S., Duncan, E., Jalali, A., Allam, Z., Roberts, B. J., Schmidt, A., Tariq, M. A. U. R., Shah, A. A., Khan, N. A., & Irshad, M. (2022). Urban Heat Island vulnerability mapping using advanced GIS data and tools. Journal of Earth System Science, 131(4). https://doi.org/10.1007/s12040-022-02005-w

Smith, I. A., Fabian, M. P., & Hutyra, L. R. (2023). Urban green space and albedo impacts on surface temperature across seven United States cities. Science of the Total Environment, 857. https://doi.org/10.1016/j.scitotenv.2022.159663

Spronken-Smith, R. A., Oke, T. R., & Lowry, W. P. (2000). Advection and the surface energy balance across an irrigated urban park. International Journal of Climatology, 20(9), 1033–1047. https://doi.org/10.1002/1097-0088(200007)20:9<1033::AID-JOC508>3.0.CO;2-U

Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. In Bulletin of the American Meteorological Society (Vol. 93, Issue 12, pp. 1879–1900). https://doi.org/10.1175/BAMS-D-11-00019.1

Synnefa, A., & Santamouris, M. (2013). White or Light Colored Cool Roofing Materials. Advances in the Development of Cool Materials for the Built Environment, 39, 33–71.

Takebayashi, H., & Moriyama, M. (2009). Study on the urban heat island mitigation effect achieved by converting to grass-covered parking. Solar Energy, 83(8), 1211–1223. https://doi.org/10.1016/j.solener.2009.01.019

Tan, J. K. N., Belcher, R. N., Tan, H. T. W., Menz, S., & Schroepfer, T. (2021). The urban heat island mitigation potential of vegetation depends on local surface type and shade. Urban Forestry and Urban Greening, 62. https://doi.org/10.1016/j.ufug.2021.127128

Técher, M., Ait Haddou, H., & Aguejdad, R. (2023). Urban Heat Island’s Vulnerability Assessment by Integrating Urban Planning Policies: A Case Study of Montpellier Méditerranée Metropolitan Area, France. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15031820

Touchaei, A. G., & Wang, Y. (2015). Characterizing urban heat island in Montreal (Canada) - Effect of urban morphology. Sustainable Cities and Society, 19, 395–402. https://doi.org/10.1016/j.scs.2015.03.005

Turner, B. L., Kasperson, R. E., Matsone, P. A., McCarthy, J. J., Corell, R. W., Christensene, L., Eckley, N., Kasperson, J. X., Luers, A., Martello, M. L., Polsky, C., Pulsipher, A., & Schiller, A. (2003). A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8074–8079. https://doi.org/10.1073/pnas.1231335100

Ulpiani, G. (2021). On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a conceptual framework. In Science of the Total Environment (Vol. 751). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2020.141727

Vargas-Hernández, J. G., & Zdunek-Wielgołaska, J. (2021). Urban green infrastructure as a tool for controlling the resilience of urban sprawl. Environment, Development and Sustainability, 23(2), 1335–1354. https://doi.org/10.1007/s10668-020-00623-2

Wang, C., Wang, Z. H., Kaloush, K. E., & Shacat, J. (2021a). Cool pavements for urban heat island mitigation: A synthetic review. In Renewable and Sustainable Energy Reviews (Vol. 146). Elsevier Ltd. https://doi.org/10.1016/j.rser.2021.111171

Wang, C., Wang, Z. H., Kaloush, K. E., & Shacat, J. (2021b). Perceptions of urban heat island mitigation and implementation strategies: survey and gap analysis. Sustainable Cities and Society, 66. https://doi.org/10.1016/j.scs.2020.102687

Wang, M., Fu, X., Zhang, D., Chen, F., Liu, M., Zhou, S., Su, J., & Tan, S. K. (2023). Assessing urban flooding risk in response to climate change and urbanization based on shared socio-economic pathways. Science of the Total Environment, 880. https://doi.org/10.1016/j.scitotenv.2023.163470

Wu, Y., Li, C., Shi, K., Liu, S., & Chang, Z. (2022). Exploring the effect of urban sprawl on carbon dioxide emissions: An urban sprawl model analysis from remotely sensed nighttime light data. Environmental Impact Assessment Review, 93. https://doi.org/10.1016/j.eiar.2021.106731

Xu, D., Zhou, D., Wang, Y., Meng, X., Gu, Z., & Yang, Y. (2021). Temporal and spatial heterogeneity research of urban anthropogenic heat emissions based on multi-source spatial big data fusion for Xi’an, China. Energy and Buildings, 240. https://doi.org/10.1016/j.enbuild.2021.110884

Yin, Z., Liu, Z., Liu, X., Zheng, W., & Yin, L. (2023). Urban heat islands and their effects on thermal comfort in the US: New York and New Jersey. Ecological Indicators, 154. https://doi.org/10.1016/j.ecolind.2023.110765

Yue, W., Liu, X., Zhou, Y., & Liu, Y. (2019). Impacts of urban configuration on urban heat island: An empirical study in China mega-cities. Science of the Total Environment, 671, 1036–1046. https://doi.org/10.1016/j.scitotenv.2019.03.421

Published

2025-01-31

How to Cite

Alexandra, P. C., & Philip, Y. (2025). Assessing the vulnerability of urban areas to the urban heat island phenomenon: Strategies for effective mitigation and sustainable urban planning. Journal of Placemaking and Streetscape Design, 2(2). https://doi.org/10.61511/jpstd.v2i2.2025.1487

Citation Check