Design and fabrication of a 20 kilogram capacity cassava-based bioethanol distillation apparatus with 2.4 liter bioethanol output

Authors

  • ZULIANTORO Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Jakarta, Indonesia
  • GUNAWAN HIDAYAT Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Jakarta, Indonesia

DOI:

https://doi.org/10.61511/jimese.v2i1.2024.995

Keywords:

bioethanol, biofuel, cooling tower, distillation, renewable energy

Abstract

Background: The depletion of fossil fuel resources and growing environmental concerns have sparked interest in renewable energy sources like bioethanol. Cassava, an abundant crop in many tropical regions, shows promise as a feedstock for bioethanol production. This study aimed to design and fabricate an efficient small-scale distillation apparatus for producing bioethanol from cassava. Method: A distillation apparatus with 20 kg cassava capacity was designed and constructed using locally available materials. Key components included a distillation tank, condenser, cooling tower system, and burner. The apparatus was tested using fermented cassava mash to evaluate its performance in bioethanol production. Findings: The fabricated apparatus successfully produced 2.4 liters of bioethanol with 65% purity from 20 kg of cassava feedstock. Optimal distillation temperature was found to be 70°C, balancing ethanol yield and purity. Heat transfer calculations indicated 576 kW of cooling capacity was required in the condenser. The cooling tower system achieved 63% thermal efficiency. Conclusion: The designed distillation apparatus demonstrates the feasibility of small-scale bioethanol production from cassava. Further optimization of the distillation process and heat recovery systems could improve efficiency. This technology shows potential for decentralized biofuel production to meet local energy needs in cassava-producing regions. Novelty/Originality of this study: The study on designing small-scale distillation equipment for bioethanol production from cassava successfully demonstrated practical and affordable applications for decentralized biofuel production in cassava-producing areas.

References

Arsyad, A. W. M. D., & Said, I. (2015). Analisis Kalor dan Sintesis Bioetanol Dari Serabut Kelapa Sawit Sebagai Alternatif Bahan Bakar Terbarukan. Palu: Pendidikan Kimia Universitas Tadulako.

Assauri. (1995). Teknik Tata Cara Sistem Kerja Dan Peta Kerja. Bandung: Institut Teknologi Bandung.

Bayhaqi, Y. (2006). Pengaruh Kualitas Layanan Dan Keunggulan Produk Terhadap Kepuasan Pelanggan Management Analysis. Semarang: Undip.

Carl Yaws. (1999). Chemical Properties Handbook (7th ed.). McGraw Hill International Edition.

Cheng, N. G., Hasan, M., Kumoro, A. C., Ling, C. F., & Tham, M. (2009). Production of Ethanol by Fed-Batch Fermentation. Pertanika Journal of Science & Technology, 17(2), 399-408.

Christian, G. D. (2004). Analytical Chemistry (6th ed.). United States of America: John Wiley & Sons, Inc.

Dean, J. A. (1995). Analytical Chemistry Handbook. United States of America: McGraw-Hill, Inc.

Dunan, S. (2009). Global Warming Potential: Causes and Mitigation Strategies. Environmental Science & Technology, 43(6), 1757-1763.

Feigenbaum, A. V. (1991). Total Quality Control (3rd ed.). Singapore: McGraw-Hill Book.

Garvin, D. A., & Davis, G. (1996). Kendali Mutu Terpadu. (H. Kandahjaya, Trans.). Erlangga.

Holman, J. P. (1991). Perpindahan Kalor Dan Massa. Jakarta: Erlangga.

Indra, A. (2012). Perancangan Dan Pembuatan Alat Ekstraksi Tebu Serta Aplikasinya Dalam Proses Pengolahan Bioetanol. Jakarta: Gunadarma.

Kadir, A. (1995). Energi, Sumber daya, Inovasi, Tenaga Listrik, Potensi Ekonomi (2nd ed.). Jakarta: UI-Press.

Khak, M., et al. (2014). Optimalisasi Fermentor Untuk Produksi Etanol Dan Analisis Hasil Fermentasi Menggunakan Gas Chromatografi. Jurnal Matematika, Sains dan Teknologi. Yogyakarta.

Lay, A., & Joseph, G. H. (2013). Karakterisasi Produk Etanol Dari Aren. Manado: Balai Palma.

Mott, R. L. (1990). Machine Elements in Mechanical Design (4th ed.). University of Dayton.

Perry, R. H., & Green, D. W. (1998). Perry's Chemical Engineers' Handbook (7th ed.). McGraw Hill International Edition.

PT Sinarmas Bio Energy. (2021). Biodiesel Transesterification. Bekasi.

Richana, N. (2011). Bioetanol: Bahan Baku, Teknologi, Produksi Dan Pengendalian Mutu. Bandung: Penerbit Nuansa.

Russell, J. T., & Lane, W. R. (1996). Kleppner's Advertising Procedure (13th ed.). New Jersey: Prentice Hall.

Setiawan, T. (2018). Rancang Bangun Alat Destilasi Uap Bioetanol Dengan Bahan Baku Batang Pisang. Jurnal Media Teknologi. Bandung.

Silaban, B. M. J., Yuwono, L. F., & Widjaja, T. (2017). Optimasi Fermentasi Produksi Etanol dari Nira Siwalan (Borassus flabellifer) Menggunakan Mikroorganisme Saccharomyces cerevisiae dan Pichia stipitis dengan Response Surface Methodology. Surabaya: Skripsi.

Sularso. (2004). Kompresor Dan Mesin Konversi Energi. Jakarta: Erlangga.

Susilo, Ulfinasari, & Rini. (2018). Pemurnian Alkohol Menggunakan Proses Destilasi-Adsorbsi Dengan Penambahan Adsorben Zeolite Sintesis. Malang: Brawijaya.

Sutalaksana, I. Z. (2006). Teknik Tata Cara Sistem Kerja Dan Peta Kerja. Bandung: Institut Teknologi Bandung.

Wardhanu, A. P. (2011). Potensi Pengembangan Bioenergi. Kalimantan Barat.

Widiarto. (2008). Proses Produksi Teknik Pemesinan. Jakarta: Depdiknas

Published

2024-07-31

How to Cite

ZULIANTORO, & HIDAYAT, G. (2024). Design and fabrication of a 20 kilogram capacity cassava-based bioethanol distillation apparatus with 2.4 liter bioethanol output. Journal of Innovation Materials, Energy, and Sustainable Engineering, 2(1). https://doi.org/10.61511/jimese.v2i1.2024.995

Issue

Section

Articles

Citation Check