Strategy of geothermal energy development as a renewable energy source in West Java Indonesia

Authors

  • Assyifa Fauzia School of Environmental Sciences, University of Indonesia, Salemba Raya Street No. 4, Central Jakarta, DKI Jakarta 10430, Indonesia
  • Muhammad Nabil Makarim School of Environmental Sciences, University of Indonesia, Salemba Raya Street No. 4, Central Jakarta, DKI Jakarta 10430, Indonesia

DOI:

https://doi.org/10.61511/jimese.v2i1.2024.810

Keywords:

geothermal energy, power plant, renewable energy, strategy, sustainable, West Java

Abstract

Background: Indonesia has vast renewable energy potential, including biofuels, biomass, and bioenergy from tropical biodiversity spread across the country. Hydropower and geothermal energy are the only forms of renewable energy used to generate electricity and are connected to the grid. Geothermal energy may be incorporated into the grid to create hybrid energy systems that will help to reduce the high energy demand while maintaining low energy costs and net present costs. There are now 14 biosphere reserves in Indonesia, divided into 24 units of core zones, six units of buffer zones, and 13 units of transition zones. The West Java Province has a geothermal potential of 6,101 MWe or 21% of Indonesia's total geothermal resources. Currently, the installed capacity of electricity from geothermal energy in West Java is 1075 MWe or 89% of the total national installed capacity of 1196 MWe. Method: This paper reviews West Java Province data collection from official government bureaus, state-owned businesses, and non-governmental organizations (NGO) reports on geothermal energy capacity, electricity installation, and used area of ​​geothermal power plant and will be limited to the years 2010 through 2020. The collected data will then be refined, extrapolated, and analyzed by the connected trend to aid in studying West Java geothermal growth and use SWOT method analysis. Finding: The result of this research is a strategy for optimizing the development of geothermal energy utilization. The strategies that can be developed are infrastructure improvement as an investment facilitation strategy, a strategy to leverage a costly investment and capital investment, underground mining in conservation forest areas to avoid degradation improvement and supervision of related institutions and stakeholders, implementation of environmentally sustainable development, and socializing programs and providing job opportunities for the local community. Conclusion: Indonesia has an enormous potential for renewable energy, especially geothermal, with West Java Province having the largest installed capacity. This study suggests strategies to optimize geothermal energy development, including improving infrastructure, investment facilities, underground mining, improving supervision, and sustainable development. Novelty/Originality of this study: Research on geothermal energy in West Java provides a comprehensive analysis and specific strategies to optimize the development of this energy in the area, including innovative underground mining approaches.

References

introducing new functions: A scenario evaluation based on participatory MCA applied to a former Carthusian Monastery in Tuscany, Italy. Sustainability, 13(4), 2335. https://doi.org/10.3390/su13042335

Ahmadi, A., Jamali, D. H., Ehyaei, M. A., & Assad, M. E. H. (2020). Energy, exergy, economic and exergoenvironmental analyses of gas and air bottoming cycles for production of electricity and hydrogen with gas reformer. Journal of Cleaner Production, 259, 120915. https://doi.org/10.1016/j.jclepro.2020.120915

Arbad, N., Emadi, H., & Watson, M. (2022). A comprehensive review of geothermal cementing from well integrity perspective. Journal of Petroleum Science and Engineering, 217, 110869. https://doi.org/10.1016/j.petrol.2022.110869

Asgari, E., & Ehyaei, M. A. (2015). Exergy analysis and optimisation of a wind turbine using genetic and searching algorithms. International Journal of Exergy, 16(3), 293–314. https://doi.org/10.1504/IJEX.2015.068228

Benti, N. E., Woldegiyorgis, T. A., Geffe, C. A., Gurmesa, G. S., Chaka, M. D., & Mekonnen, Y. S. (2023). Overview of geothermal resources utilization in Ethiopia: Potentials, opportunities, and challenges. Scientific African, 19, e01562. https://doi.org/10.1016/j.sciaf.2023.e01562

Conti, J., Holtberg, P., Diefenderfer, J., LaRose, A., Turnure, J. T., & Westfall, L. (2016). International energy outlook 2016 with projections to 2040 (No. DOE/EIA-0484 (2016)). USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Analysis. https://doi.org/10.2172/1296780

Cunha, R. P., & Bourne-Webb, P. J. (2022). A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings. Renewable and Sustainable Energy Reviews, 158, 112072. https://doi.org/10.1016/j.rser.2022.112072

Cunningham, W. P. (2008). Environmental Science A Global Concern (10th edition). New York: Mc Graw-Hill.

Dincer, I., & Zamfirescu, C. (2012). Renewable-energy-based multigeneration systems. International Journal of Energy Research, 36(15), 1403–1415. https://doi.org/10.1002/er.2882

Dostál, Z., & Ladányi, L. (2018). Demands on energy storage for renewable power sources. Journal of Energy Storage, 18, 250–255. https://doi.org/10.1016/j.est.2018.05.003

El-Agouz, S. A., Abd Elbar, A. R., Aboghazala, A. M., Shahin, M., Zakaria, M. Y., Esmaeil, K. K., & Zayed, M. E. (2022). Comprehensive parametric analysis, sizing, and performance evaluation of a tubular direct contact membrane desalination system driven by heat pipe-based solar collectors. Energy Conversion and Management, 274, 116437. https://doi.org/10.1016/j.enconman.2022.116437

El-Hadary, M. I., Senthilraja, S., & Zayed, M. E. (2023). A hybrid system coupling spiral type solar photovoltaic thermal collector and electrocatalytic hydrogen production cell: Experimental investigation and numerical modeling. Process Safety and Environmental Protection, 170, 1101–1120. https://doi.org/10.1016/j.psep.2022.12.079

Fadillah, A., Nugraha, T., Gumilar, J., & Street, S. H. (2013). West Java geothermal update. 38th Workshop on Geothermal Reservoir Engineering 2013, 1503–1510. https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2013/Yanuar.pdf

Fan, J., Zhang, Y., Mu, J., He, X., Shao, B., Zhou, D., Peng, W., Tang, J., Jiang, Y., Ren, G., & Xiang, T. (2018). TET1 exerts its anti-tumor functions via demethylating DACT2 and SFRP2 to antagonize Wnt/β-catenin signaling pathway in nasopharyngeal carcinoma cells. Clinical Epigenetics, 10(1). https://doi.org/10.1186/s13148-018-0535-7

Ghazinoory, S., Abdi, M., & Azadegan-Mehr, M. (2011). Swot methodology: A state-of-the-art review for the past, a framework for the future. Journal of Business Economics and Management, 12(1), 24–48. https://doi.org/10.3846/16111699.2011.555358

Gulyas, B. Z., & Edmondson, J. L. (2021). Increasing city resilience through urban agriculture: Challenges and solutions in the global north. Sustainability (Switzerland), 13(3), 1–19. https://doi.org/10.3390/su13031465

Hidajat, R. A. (2020). Kajian Keberlanjutan Pembangkit Listrik Tenaga Panas Bumi. Retrieved from https://lib.ui.ac.id/detail?id=20507209&lokasi=lokal

Indonesia National Energy Council (Dewan Energi Nasional). (2017). Indonesia Outlook Energy. Sekertariat Jendral Dewan Energi Nasional. https://den.go.id/publikasi/Outlook-Energi-Indonesia

Indonesia National Energy Council (Dewan Energi Nasional). (2016). Indonesia Outlook Energy. Sekertariat Jendral Dewan Energi Nasional. Sekertariat Jendral Dewan Energi Nasional. https://www.esdm.go.id/assets/media/content/outlook_energi_indonesia_2016_opt.pdf

Islam, M. T., Nabi, M. N., Arefin, M. A., Mostakim, K., Rashid, F., Hassan, N. M. S., Rahman, S. M. A., McIntosh, S., Mullins, B. J., & Muyeen, S. M. (2022). Trends and prospects of geothermal energy as an alternative source of power: A comprehensive review. Heliyon, 8(12), e11836. https://doi.org/10.1016/j.heliyon.2022.e11836

Jamali, D. H., & Noorpoor, A. (2019). Optimization of a novel solar-based multi-generation system for waste heat recovery in a cement plant. Journal of Cleaner Production, 240, 117825. https://doi.org/10.1016/j.jclepro.2019.117825

Li, Z. X., Ehyaei, M. A., Ahmadi, A., Jamali, D. H., Kumar, R., & Abanades, S. (2020). Energy, exergy and economic analyses of new coal-fired cogeneration hybrid plant with wind energy resource. Journal of Cleaner Production, 269, 122331. https://doi.org/10.1016/j.jclepro.2020.122331

Ma, L., Li, Y., Wang, J., Li, S., Zhao, J., Li, W., Zayed, M. E., Shao, Q., & Sun, M. (2019). A thermal-dissipation correction method for in-situ soil thermal response test: Experiment and simulation under multi-operation conditions. Energy and Buildings, 194, 218–231. https://doi.org/10.1016/j.enbuild.2019.04.014

Maghsoudi, Y., van der Meer, F., Hecker, C., Perissin, D., & Saepuloh, A. (2018). Using PS-InSAR to detect surface deformation in geothermal areas of West Java in Indonesia. International Journal of Applied Earth Observation and Geoinformation, 64(November 2016), 386–396. https://doi.org/10.1016/j.jag.2017.04.001

Mansoer, W. R., & Idral, A. (2015). Geothermal resources development in Indonesia: a history. World Geothermal Congress, 1–11. https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2015/06011.pdf

Matos, C. R., Carneiro, J. F., & Silva, P. P. (2019). Overview of Large-Scale Underground Energy Storage Technologies for Integration of Renewable Energies and Criteria for Reservoir Identification. Journal of Energy Storage, 21, 241–258. https://doi.org/https://doi.org/10.1016/j.est.2018.11.023

Miller, G. T., & Spoolman, S. E. (2018). Living in Environment (Nineteenth). Cengage Learning.

Ministry of Energy and Mineral Resources. (2011). Kontribusi Jawa Barat 89 Persen. Direktorat Jenderal Energi Baru Terbarukan Dan Konservasi Energi. https://ebtke.esdm.go.id/post/2011/04/09/132/kontribusi.jawa.barat.89.persen

Ministry of Energy and Mineral Resources (Kementrian Energi dan Sumber Daya Mineral Republik Indonesia). Indonesia Geothermal Potential 1st Edition. Kementrian Energi dan Sumber Daya Mineral Republik Indonesia. https://www.esdm.go.id/en

Ministry of Environment and Forestry. (2020). Statistik Direktorat Jenderal Konservasi Sumber Daya Alam dan Ekosistem Tahun 2019. Kementerian Lingkungan Hidup dan Kehutanan. https://ksdae.menlhk.go.id/assets/publikasi/STATISTIK_2019.pdf

Mutsuda, H., Rahmawati, S., Taniguchi, N., Nakashima, T., & Doi, Y. (2019). Harvesting ocean energy with a small-scale tidal-current turbine and fish aggregating device in the Indonesian Archipelagos. Sustainable Energy Technologies and Assessments, 35(January), 160–171. https://doi.org/10.1016/j.seta.2019.07.001

Nasruddin, Idrus Alhamid, M., Daud, Y., Surachman, A., Sugiyono, A., Aditya, H. B., & Mahlia, T. M. I. (2016). Potential of geothermal energy for electricity generation in Indonesia: A review. Renewable and Sustainable Energy Reviews, 53, 733–740. https://doi.org/10.1016/j.rser.2015.09.032

Pambudi, N. A. (2018). Geothermal power generation in Indonesia, a country within the ring of fire: Current status, future development and policy. Renewable and Sustainable Energy Reviews, 81, 2893–2901. https://doi.org/10.1016/j.rser.2017.06.096

Peter, P., Kusumah, Y. I., & Ryder, A. (2015). Evaluation of Production Multilateral Well in Salak Geothermal Field, Indonesia. World Geothermal Congress.

Rashid, F., Hoque, Md. E., Aziz, M., Sakib, T. N., Islam, Md. T., & Robin, R. M. (2021). Investigation of Optimal Hybrid Energy Systems Using Available Energy Sources in a Rural Area of Bangladesh. Energies, 14(18). https://doi.org/10.3390/en14185794

Ritchie, H., Roser, M., & Rosado, H. (2022). Energy. Our World in Data. https://ourworldindata.org/energy

Rozaq, K., Rahayu, D., & Bramantio, B. (2015). Development of Geothermal in Indonesia-PGE. Proceedings World Geothermal Congress 2015 Melbourne.

Purnanto, M. H., & Purwakusumah, A. (2015). Fifteen Years (Mid-Life Time) of Wayang Windu Geothermal Power Station Unit-1: An Operational Review. Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–24. https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2015/26040.pdf

Raddad, B. S. H. (2022). Strategic planning to integrate urban agriculture in Palestinian urban development under conditions of political instability. Urban Forestry and Urban Greening, 76(July), 127734. https://doi.org/10.1016/j.ufug.2022.127734

Rashid, F., Hoque, M. E., Aziz, M., Sakib, T. N., Islam, M. T., & Robin, R. M. (2021). Investigation of Optimal Hybrid Energy Systems Using Available Energy Sources in a Rural Area of Bangladesh. In Energies (Vol. 14, Issue 18). https://doi.org/10.3390/en14185794

Schotanus, M. (2013). The Patuha geothermal system: a numerical model of a vapor-dominated system (Issue April). Universiteit Utercht. https://studenttheses.uu.nl/handle/20.500.12932/13469

Shoedarto, R. M., Tada, Y., Kashiwaya, K., Koike, K., Iskandar, I., Malik, D., & Bratakusuma, B. (2021). Investigation of meteoric water and parent fluid mixing in a two-phase geothermal reservoir system using strontium isotope analysis: A case study from Southern Bandung, West Java, Indonesia. Geothermics, 94(June 2020), 102096. https://doi.org/10.1016/j.geothermics.2021.102096

Setiawan, A. D., Dewi, M. P., Jafino, B. A., & Hidayatno, A. (2022). Evaluating feed-in tariff policies on enhancing geothermal development in Indonesia. Energy Policy, 168, 113164. https://doi.org/10.1016/j.enpol.2022.113164

Sutriani, W., & Wijayanto, B. (2020). Strategi Pengembangan Industri Energi Terbarukan Geothermal di Kabupaten Pasaman. Geography Science Education Explored, 1(1). https://jurnal.unsil.ac.id/index.php/geosee/article/view/1918

Sofyan, Y. (2012). Development of a new simple hydrostatic equilibrium model for sustainable evaluation in geothermal energy. Energy Procedia, 14, 205–210. https://doi.org/10.1016/j.egypro.2011.12.983

Swandaru, R. B. (2006). Thermodynamic analysis of preliminary design of power plant unit I Patuha, West Java, Indonesia. United Nations University.

Utomo, D. P., & Purba, B. (2019). Penerapan Datamining pada Data Gempa Bumi Terhadap Potensi Tsunami di Indonesia. Prosiding Seminar Nasional Riset Information Science (SENARIS), 1(September), 846. https://doi.org/10.30645/senaris.v1i0.91

Voukkali, I., & Zorpas, A. A. (2022). Evaluation of urban metabolism assessment methods through SWOT analysis and analytical hierocracy process. Science of The Total Environment, 807, 150700. https://doi.org/10.1016/j.scitotenv.2021.150700

Xia, L., & Zhang, Y. (2019). An overview of world geothermal power generation and a case study on China—The resource and market perspective. Renewable and Sustainable Energy Reviews, 112, 411–423. https://doi.org/10.1016/j.rser.2019.05.058

Zayed, M. E., Zhao, J., Elsheikh, A. H., Li, W., Sadek, S., & Aboelmaaref, M. M. (2021). A comprehensive review on Dish/Stirling concentrated solar power systems: Design, optical and geometrical analyses, thermal performance assessment, and applications. Journal of Cleaner Production, 283, 124664. https://doi.org/10.1016/j.jclepro.2020.124664

Zayed, M. E., Zhao, J., Li, W., Elsheikh, A. H., Elbanna, A. M., Jing, L., & Geweda, A. E. (2020). Recent progress in phase change materials storage containers: Geometries, design considerations and heat transfer improvement methods. Journal of Energy Storage, 30, 101341. https://doi.org/10.1016/j.est.2020.101341

Downloads

Published

2024-07-31

How to Cite

Fauzia, A., & Makarim, M. N. (2024). Strategy of geothermal energy development as a renewable energy source in West Java Indonesia . Journal of Innovation Materials, Energy, and Sustainable Engineering, 2(1), 1–18. https://doi.org/10.61511/jimese.v2i1.2024.810

Issue

Section

Articles

Citation Check