Environmental life cycle assessment of conventional and electric vehicles: lessons learned from selected countries

Authors

  • Muhammad Idris University of Indonesia, Indonesia
  • Raldi Hendro Koestoer University of Indonesia, Indonesia

DOI:

https://doi.org/10.61511/jimese.v1i1.2023.27

Keywords:

conventional vehicle, electric vehicle, environmental impact, life cycle assessment

Abstract

Electric vehicle (EV) is an alternative expected to be tail-pipe emission-free and improve public health. Switching conventional or internal combustion engine vehicles (ICEVs) to EVs becomes a potential strategy for realizing urban sustainability. The study aims to review the environmental impact between ICEV and EV in Lithuania, China, Canada, Poland, Czech Republic, Italy, United States, and Australia. Then, the review result is compared to the Indonesia context as lessons learned. A comparative study with a qualitative descriptive method was carried out. The main activities are a literature review. The works of literature were collected, classified, and reviewed to find out significant findings on the environmental impact of ICEV and EV. Assessing the vehicle in all life-cycle (LC) phases is an essential issue. The entire LC of products may significantly impact the environment due to the utilization of raw materials through a process that causes adverse environmental impacts. Therefore, Life-cycle assessment (LCA) is proposed to estimate the environmental effects related to all the LC stages of EVs. Thus, LCA could be a critical tool. Numerous cases in several countries show that EVs were not always more environmentally friendly than ICEVs. The review indicates that EVs and electricity-generating mix scenarios play a significant role in performing LCA due to the performance of an EV is extremely dependent on the energy consumed through its operation phase. Additionally, the results show how significant renewable energy sources (RES) are in the electricity-generating mix that provides different environmental impacts. In the Indonesia context, the environmental impact of EV is predicted to be higher than ICEV due to the electricity generating mix is still lower than 20% in 2023. Optimizing the electricity generating mix scenario by increasing the RES, implementing clean technology power plants, and applying vehicle recycling are excellent strategies to promote sustainable development in the EV industry. However, economic and social aspects shall be considered to get comprehensive results in further research.

Author Biography

Raldi Hendro Koestoer, University of Indonesia

 

 

References

Abas, P. E., Yong, J., Mahlia, T. M. I., & Hannan, M. A. (2019). Techno-Economic Analysis and Environmental Impact of Electric Vehicle. IEEE Access, PP, 1-1. doi:10.1109/ACCESS.2019.2929530

Ahmad, S., Wong, K. Y., Tseng, M. L., & Wong, W. P. (2018). Sustainable product design and development: A review of tools, applications and research prospects. Resources, Conservation and Recycling, 132, 49-61. https://doi.org/10.1016/j.resconrec.2018.01.020

Ahmadi, P. (2019). Environmental impacts and behavioral drivers of deep decarbonization for transportation through electric vehicles. Journal of cleaner production, 225, 1209-1219. https://doi.org/10.1016/j.jclepro.2019.03.334

Andrzej, S., Pielecha, I., & Cieslik, W. (2021). Fuel Cell Electric Vehicle (FCEV) Energy Flow Analysis in Real Driving Conditions (RDC). Energies, 14, 5018. doi:10.3390/en14165018

Athanasopoulou, L., Bikas, H., & Stavropoulos, P. (2018). Comparative Well-to-Wheel Emissions Assessment of Internal Combustion Engine and Battery Electric Vehicles. Procedia CIRP, 78, 25-30. https://doi.org/10.1016/j.procir.2018.08.169

Aziz, M., Ito, M., & Oda, T. (2016). Battery-assisted charging system for simultaneous charging of electric vehicles. Energy, 100, 82-90. doi:10.1016/j.energy.2016.01.069

Bakker, D. (2010). Battery electric vehicles: performance, CO2 emissions, lifecycle costs and advanced battery technology development. Copernicus Institute University of Utrecht.

Bañol Arias, N., Hashemi, S., Andersen, P. B., Træholt, C., & Romero, R. (2020). Assessment of economic benefits for EV owners participating in the primary frequency regulation markets. International Journal of Electrical Power & Energy Systems, 120, 105985. https://doi.org/10.1016/j.ijepes.2020.105985

Bianco, I., Thiébat, F., Carbonaro, C., Pagliolico, S., Blengini, G. A., & Comino, E. (2021). Life Cycle Assessment (LCA)-based tools for the eco-design of wooden furniture. Journal of cleaner production, 324, 129249. https://doi.org/10.1016/j.jclepro.2021.129249

Bicer, Y., & Dincer, I. (2018). Life cycle environmental impact assessments and comparisons of alternative fuels for clean vehicles. Resources, Conservation and Recycling, 132, 141-157. https://doi.org/10.1016/j.resconrec.2018.01.036

Burchart-Korol, D., Jursova, S., Folęga, P., Korol, J., Pustejovska, P., & Blaut, A. (2018). Environmental life cycle assessment of electric vehicles in Poland and the Czech Republic. Journal of cleaner production, 202, 476-487. https://doi.org/10.1016/j.jclepro.2018.08.145

Capros, P., De Vita, A., Tasios, N., Siskos, P., Kannavou, M., Petropoulos, A., Evangelopoulou, S., Zampara, M., Papadopoulos, D., & Nakos, C. (2016). EU Reference Scenario 2016-Energy, transport and GHG emissions Trends to 2050. doi: 10.2833/001137

Challa, R., Kamath, D., & Anctil, A. (2022). Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US. Journal of Environmental Management, 308, 114592. doi:https://doi.org/10.1016/j.jenvman.2022.114592

Choi, H., Shin, J., & Woo, J. (2018). Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact. Energy Policy, 121, 13-24. https://doi.org/10.1016/j.enpol.2018.06.013

Curran, M. A. (2013). Life Cycle Assessment: a review of the methodology and its application to sustainability. Current Opinion in Chemical Engineering, 2(3), 273-277. https://doi.org/10.1016/j.coche.2013.02.002

Curran, M. A. (2014). Strengths and Limitations of Life Cycle Assessment. In W. Klöpffer (Ed.), Background and Future Prospects in Life Cycle Assessment (pp. 189-206). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-017-8697-3_6

Das, H. S., Tan, C. W., & Yatim, A. H. M. (2017). Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies. Renewable and Sustainable Energy Reviews, 76, 268-291. https://doi.org/10.1016/j.rser.2017.03.056

Delucchi, M. A., & Lipman, T. E. (2001). An analysis of the retail and lifecycle cost of battery-powered electric vehicles. Transportation Research Part D: Transport and Environment, 6(6), 371-404. https://doi.org/10.1016/S1361-9209(00)00031-6

Dižo, J., Blatnický, M., Semenov, S., Mikhailov, E., Kostrzewski, M., Droździel, P., & Šťastniak, P. (2021). Electric and plug-in hybrid vehicles and their infrastructure in a particular European region. Transportation Research Procedia, 55, 629-636. https://doi.org/10.1016/j.trpro.2021.07.029

Dong, Y., Miraglia, S., Manzo, S., Georgiadis, S., Sørup, H. J. D., Boriani, E., Hald, T., Thöns, S., & Hauschild, M. Z. (2018). Environmental sustainable decision making–The need and obstacles for integration of LCA into decision analysis. Environmental Science & Policy, 87, 33-44. https://doi.org/10.1016/j.envsci.2018.05.018

Du, J., Ouyang, M., & Chen, J. (2017). Prospects for Chinese electric vehicle technologies in 2016–2020: Ambition and rationality. Energy, 120, 584-596. https://doi.org/10.1016/j.energy.2016.11.114

Duan, L., Xia, K., Feng, T., Jia, S., & Bian, J. (2016). Study on coal-fired power plant with CO2 capture by integrating molten carbonate fuel cell system. Energy, 117, 578-589. https://doi.org/10.1016/j.energy.2016.03.063

Fathabadi, H. (2018). Fuel cell hybrid electric vehicle (FCHEV): Novel fuel cell/SC hybrid power generation system. Energy Conversion and Management, 156, 192-201. https://doi.org/10.1016/j.enconman.2017.11.001

Ferg, E. E., Schuldt, F., & Schmidt, J. (2019). The challenges of a Li-ion starter lighting and ignition battery: A review from cradle to grave. Journal of Power Sources, 423, 380-403. https://doi.org/10.1016/j.jpowsour.2019.03.063

Finkbeiner, M., Wiedemann, M., & Saur, K. (1998). A comprehensive approach towards product and organisation related environmental management tools: life cycle assessment (ISO 14040) and environmental management systems (ISO 14001). The International Journal of Life Cycle Assessment, 3, 169-178. https://doi.org/10.1007/BF02978825

García-Olivares, A., Solé, J., & Osychenko, O. (2018). Transportation in a 100% renewable energy system. Energy Conversion and Management, 158, 266-285. https://doi.org/10.1016/j.enconman.2017.12.053

Hagen, J., Büth, L., Haupt, J., Cerdas, F., & Herrmann, C. (2020). Live LCA in learning factories: real time assessment of product life cycles environmental impacts. Procedia Manufacturing, 45, 128-133. https://doi.org/10.1016/j.promfg.2020.04.083

He, X., Kim, H. C., Wallington, T. J., Zhang, S., Shen, W., De Kleine, R., Keoleian, G. A., Ma, R., Zheng, Y., Zhou, B., & Wu, Y. (2020). Cradle-to-gate greenhouse gas (GHG) burdens for aluminum and steel production and cradle-to-grave GHG benefits of vehicle lightweighting in China. Resources, Conservation and Recycling, 152, 104497. https://doi.org/10.1016/j.resconrec.2019.104497

IEA. (2021). Global EV Outlook 2021 : Accelerating ambitions despite the pandemic. Retrieved from www.iea.org

Ilgin, M. A., & Gupta, S. M. (2010). Environmentally conscious manufacturing and product recovery (ECMPRO): A review of the state of the art. Journal of environmental management, 91(3), 563-591. https://doi.org/10.1016/j.jenvman.2009.09.037

Kawamoto, R., Mochizuki, H., Moriguchi, Y., Nakano, T., Motohashi, M., Sakai, Y., & Inaba, A. (2019). Estimation of CO2 Emissions of Internal Combustion Engine Vehicle and Battery Electric Vehicle Using LCA. Sustainability, 11(9), 2690. https://doi.org/10.3390/su11092690

Kawamura, H., Ito, K., Karikomi, T., & Kume, T. (2011). Highly-Responsive Acceleration Control for the Nissan LEAF Electric Vehicle. https://doi.org/10.4271/2011-01-0397

Lavee, D., & Parsha, A. (2021). Cost-benefit analyses of policy tools to encourage the use of Plug-in electric vehicles. Transportation Research Interdisciplinary Perspectives, 11, 100404. https://doi.org/10.1016/j.trip.2021.100404

Leach, F., Kalghatgi, G., Stone, R., & Miles, P. (2020). The scope for improving the efficiency and environmental impact of internal combustion engines. Transportation Engineering, 1, 100005. https://doi.org/10.1016/j.treng.2020.100005

Li, W., Stanula, P., Egede, P., Kara, S., & Herrmann, C. (2016). Determining the Main Factors Influencing the Energy Consumption of Electric Vehicles in the Usage Phase. Procedia CIRP, 48, 352-357. https://doi.org/10.1016/j.procir.2016.03.014

Listrik, R. U. P. T. (2021). Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT. PLN (Persero) 2021-2030. Jakarta: PT PLN, pp. IV (13-14), Maret.

Lopes Silva, D. A., Nunes, A. O., Piekarski, C. M., da Silva Moris, V. A., de Souza, L. S. M., & Rodrigues, T. O. (2019). Why using different Life Cycle Assessment software tools can generate different results for the same product system? A cause–effect analysis of the problem. Sustainable Production and Consumption, 20, 304-315. https://doi.org/10.1016/j.spc.2019.07.005

Maghfiroh, M. F. N., Pandyaswargo, A. H., & Onoda, H. (2021). Current readiness status of electric vehicles in indonesia: Multistakeholder perceptions. Sustainability, 13(23), 13177. https://doi.org/10.3390/su132313177

Marmiroli, B., Messagie, M., Dotelli, G., & Van Mierlo, J. (2018). Electricity generation in LCA of electric vehicles: A review. Applied Sciences, 8(8), 1384. https://doi.org/10.3390/app8081384

Meisel, S. & Merfeld, T. (2018). Economic incentives for the adoption of electric vehicles: A classification and review of e-vehicle services. Transportation Research Part D: Transport and Environment, 65, 264-287. https://doi.org/10.1016/j.trd.2018.08.014

Muzir, N. A. Q., Mojumder, M. R. H., Hasanuzzaman, M., & Selvaraj, J. (2022). Challenges of Electric Vehicles and Their Prospects in Malaysia: A Comprehensive Review. Sustainability, 14(14), 8320. https://doi.org/10.3390/su14148320

Nour, M., Chaves-Ávila, J., Magdy, G., & Sánchez-Miralles, Á. (2020). Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems. Energies, 4675. https://doi.org/10.3390/en13184675

Onat, N. C., Kucukvar, M., & Tatari, O. (2015). Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States. Applied energy, 150, 36-49. https://doi.org/10.1016/j.apenergy.2015.04.001

Pero, F. D., Delogu, M., & Pierini, M. (2018). Life Cycle Assessment in the automotive sector: a comparative case study of Internal Combustion Engine (ICE) and electric car. Procedia Structural Integrity, 12, 521-537. https://doi.org/10.1016/j.prostr.2018.11.066

Petrauskienė, K., Skvarnavičiūtė, M., & Dvarionienė, J. (2020). Comparative environmental life cycle assessment of electric and conventional vehicles in Lithuania. Journal of cleaner production, 246, 119042. https://doi.org/10.1016/j.jclepro.2019.119042

Pipitone, E., Caltabellotta, S., & Occhipinti, L. (2021). A Life Cycle Environmental Impact Comparison between Traditional, Hybrid, and Electric Vehicles in the European Context. Sustainability, 13(19). https://doi.org/10.3390/su131910992

Pukrushpan, J. T., Stefanopoulou, A. G., & Peng, H. (2004). Control of fuel cell power systems: principles, modeling, analysis and feedback design: Springer Science & Business Media. https://doi.org/10.1007/978-1-4471-3792-4

Qiao, Q., Zhao, F., Liu, Z., & Hao, H. (2019). Electric vehicle recycling in China: Economic and environmental benefits. Resources, Conservation and Recycling, 140, 45-53. https://doi.org/10.1016/j.resconrec.2018.09.003

Qiao, Q., Zhao, F., Liu, Z., He, X., & Hao, H. (2019). Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle. Energy, 177, 222-233. https://doi.org/10.1016/j.energy.2019.04.080

Que, Z., Wang, S., & Li, W. (2015). Potential of Energy Saving and Emission Reduction of Battery Electric Vehicles with Two Type of Drivetrains in China. Energy Procedia, 75, 2892-2897. https://doi.org/10.1016/j.egypro.2015.07.584

Raugei, M., & Winfield, P. (2019). Prospective LCA of the production and EoL recycling of a novel type of Li-ion battery for electric vehicles. Journal of cleaner production, 213, 926-932. https://doi.org/10.1016/j.jclepro.2018.12.237

Ritchie, H. R., Max Rosado, Pablo (2020). CO₂ and Greenhouse Gas Emissions. from OurWorldInData.org https://ourworldindata.org/co2-and-greenhouse-gas-emissions

Roser, M., Ritchie, H., Ortiz-Ospina, E., & Rodés-Guirao, L. (2023). World Population Growth. from OurWorldInData.org https://ourworldindata.org/world-population-growth

Rozman, M. (2019). Inductive wireless power transmission for automotive applications. Doctoral dissertation, Manchester Metropolitan University).

https://e-space.mmu.ac.uk/id/eprint/623344

Sanguesa, J. A., Torres-Sanz, V., Garrido, P., Martinez, F. J., & Marquez-Barja, J. M. (2021). A Review on Electric Vehicles: Technologies and Challenges. Smart Cities, 4(1), 372-404. https://doi.org/10.3390/smartcities4010022

Serenella, S., Mathieux, F., & Pant, R. (2015). Life cycle assessment and sustainability supporting decision making by business and policy. Sustainability Assessment of Renewables-Based Products: Methods and Case Studies, 201. https://doi.org/10.1002/9781118933916.ch13

Setiawan, I. C. (2019). Policy simulation of electricity-based vehicle utilization in Indonesia (electrified vehicle-HEV, PHEV, BEV and FCEV). Automotive Experiences, 2(1), 1-8. https://doi.org/10.31603/ae.v2i1.2020

Shafique, M., & Luo, X. (2022). Environmental life cycle assessment of battery electric vehicles from the current and future energy mix perspective. Journal of Environmental Management, 303, 114050. https://doi.org/10.1016/j.jenvman.2021.114050

Sharma, R., Manzie, C., Bessede, M., Crawford, R. H., & Brear, M. J. (2013). Conventional, hybrid and electric vehicles for Australian driving conditions. Part 2: Life cycle CO2-e emissions. Transportation Research Part C: Emerging Technologies, 28, 63-73. https://doi.org/10.1016/j.trc.2012.12.011

Shaukat, N., Khan, B., Ali, S. M., Mehmood, C. A., Khan, J., Farid, U., Majid, M., Anwar, S. M., Jawad, M., & Ullah, Z. (2018). A survey on electric vehicle transportation within smart grid system. Renewable and Sustainable Energy Reviews, 81, 1329-1349. https://doi.org/10.1016/j.rser.2017.05.092

Silva, D., Nunes, A. O., da Silva Moris, A., Moro, C., & Piekarski, T. O. R. (2017). How important is the LCA software tool you choose Comparative results from GaBi, openLCA, SimaPro and Umberto. Paper presented at the Proceedings of the VII Conferencia Internacional de Análisis de Ciclo de Vida en Latinoamérica, Medellin, Colombia.

Song, C., Gardner, K. H., Klein, S. J. W., Souza, S. P., & Mo, W. (2018). Cradle-to-grave greenhouse gas emissions from dams in the United States of America. Renewable and Sustainable Energy Reviews, 90, 945-956. https://doi.org/10.1016/j.rser.2018.04.014

Steinbach, L. & Altinsoy, M. E. (2019). Prediction of annoyance evaluations of electric vehicle noise by using artificial neural networks. Applied Acoustics, 145, 149-158. https://doi.org/10.1016/j.apacoust.2018.09.024

Subekti, R. (2022). Urgensi Pengaturan Pengendalian Perubahan Iklim melalui Kebijakan Kendaraan Listrik di Indonesia (Perbandingan Pengaturan di Indonesia, Amerika Serikat dan China). Jurnal Rechts Vinding: Media Pembinaan Hukum Nasional, 11(3). http://dx.doi.org/10.33331/rechtsvinding.v11i3.992

Tagliaferri, C., Evangelisti, S., Acconcia, F., Domenech, T., Ekins, P., Barletta, D., & Lettieri, P. (2016). Life cycle assessment of future electric and hybrid vehicles: A cradle-to-grave systems engineering approach. Chemical Engineering Research and Design, 112, 298-309. https://doi.org/10.1016/j.cherd.2016.07.003

Tang, Y., Cockerill, T. T., Pimm, A. J., & Yuan, X. (2021). Reducing the life cycle environmental impact of electric vehicles through emissions-responsive charging. iScience, 24(12), 103499. https://doi.org/10.1016/j.isci.2021.103499

Ternel, C., Bouter, A., & Melgar, J. (2021). Life cycle assessment of mid-range passenger cars powered by liquid and gaseous biofuels: Comparison with greenhouse gas emissions of electric vehicles and forecast to 2030. Transportation Research Part D: Transport and Environment, 97, 102897. https://doi.org/10.1016/j.trd.2021.102897

Thompson, D. J. & D Ixon, J. (2018). Vehicle noise. In (pp. 250-305): CRC Press.

Thorne, Z., & Hughes, L. (2019). Evaluating the effectiveness of electric vehicle subsidies in Canada. Procedia Computer Science, 155, 519-526. https://doi.org/10.1016/j.procs.2019.08.072

Utami, M. W. D., Yuniaristanto, Y., & Sutopo, W. (2020). Adoption Intention Model of Electric Vehicle in Indonesia. Jurnal Optimasi Sistem Industri, 19(1), 70-81. https://doi.org/10.25077/josi.v19.n1.p70-81.2020

Van Soest, H. L., den Elzen, M. G. J., & van Vuuren, D. P. (2021). Net-zero emission targets for major emitting countries consistent with the Paris Agreement. Nature Communications, 12(1), 1-9. https://doi.org/10.1038/s41467-021-22294-x

Verma, S., Dwivedi, G., & Verma, P. (2022). Life cycle assessment of electric vehicles in comparison to combustion engine vehicles: A review. Materials Today: Proceedings, 49, 217-222. doi:https://doi.org/10.1016/j.matpr.2021.01.666

Verma, S., Mishra, S., Gaur, A., Chowdhury, S., Mohapatra, S., Dwivedi, G., & Verma, P. (2021). A comprehensive review on energy storage in hybrid electric vehicle. Journal of Traffic and Transportation Engineering (English Edition), 8(5), 621-637. doi:https://doi.org/10.1016/j.jtte.2021.09.001

Veza, I., Abas, M. A., Djamari, D. W., Tamaldin, N., Endrasari, F., Budiman, B. A., Idris, M., Opia, A. C., Juangsa, F. B., & Aziz, M. (2022). Electric Vehicles in Malaysia and Indonesia: Opportunities and Challenges. Energies, 15(7), 2564. https://doi.org/10.3390/en15072564

Veza, I., Said, M. F. M., & Latiff, Z. A. (2020). Improved performance, combustion and emissions of SI engine fuelled with butanol: A review. International Journal of Automotive and Mechanical Engineering, 17(1), 7648-7666. https://doi.org/10.15282/ijame.17.1.2020.13.0568

Wang, N., Tang, L., Zhang, W., & Guo, J. (2019). How to face the challenges caused by the abolishment of subsidies for electric vehicles in China? Energy, 166, 359-372. https://doi.org/10.1016/j.energy.2018.10.006

Watkins, M., Casamayor, J. L., Ramirez, M., Moreno, M., Faludi, J., & Pigosso, D. C. A. (2021). Sustainable Product Design Education: Current Practice. She Ji: The Journal of Design, Economics, and Innovation, 7(4), 611-637. https://doi.org/10.1016/j.sheji.2021.11.003

Wolf, M.-A., Pant, R., Chomkhamsri, K., Sala, S., & Pennington, D. (2012). The international reference life cycle data system (ILCD) handbook. European Commission, Luxembourg. 10.2788/85727

Wu, Z., Wang, M., Zheng, J., Sun, X., Zhao, M., & Wang, X. (2018). Life cycle greenhouse gas emission reduction potential of battery electric vehicle. Journal of cleaner production, 190, 462-470. https://doi.org/10.1016/j.jclepro.2018.04.036

Yang, F., Xie, Y., Deng, Y., & Yuan, C. (2018). Considering Battery Degradation in Life Cycle Greenhouse Gas Emission Analysis of Electric Vehicles. Procedia CIRP, 69, 505-510. doi:https://doi.org/10.1016/j.procir.2017.12.008

Zheng, G. & Peng, Z. (2021). Life Cycle Assessment (LCA) of BEV’s environmental benefits for meeting the challenge of ICExit (Internal Combustion Engine Exit). Energy Reports, 7, 1203-1216. https://doi.org/10.1016/j.egyr.2021.02.039

Downloads

Published

2023-07-31

How to Cite

Idris, M., & Koestoer, R. H. (2023). Environmental life cycle assessment of conventional and electric vehicles: lessons learned from selected countries. Journal of Innovation Materials, Energy, and Sustainable Engineering, 1(1). https://doi.org/10.61511/jimese.v1i1.2023.27

Issue

Section

Articles

Citation Check