Data-driven optimization of rice husk waste management through an integrated machine learning and community-based pyrolysis approach

Authors

  • Hanif Yusran Makarim Agricultural Engineering, School of Life Sciences and Technology, Institut Teknologi Bandung, Sumedang, West Java 45360, Indonesia
  • Muhammad Daffa Anrizky Bioenergy and Chemurgy Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Sumedang, West Java 45360, Indonesia
  • Bondan Attoriq Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, West Java 40132, Indonesia
  • Daniel Evan Koyongian Bioengineering, School of Life Sciences and Technology, Institut Teknologi Bandung, Sumedang, West Java 45360, Indonesia
  • Rafa Adhi Negoro Industrial Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Cirebon, West Java 4516, Indonesia

DOI:

https://doi.org/10.61511/jimese.v3i2.2026.2617

Keywords:

catalytic fast pyrolysis, hydrotreating, NSGA-II, rice husk, surrogate modeling

Abstract

Background: Indonesia’s energy landscape currently pivots between two bifaceted issues: the stagnation of the national energy transition and the inefficiencies of decentralized waste management. Despite East Java producing 9.27 million tons of dry-milled rice (GKG) in 2024, the resulting 1.85 Mt of rice husk remains an underutilized bio-resource. This wasted potential coincides with a sluggish renewable energy trajectory, where the 15.25% share by mid-2025 significantly trails the 23% national target. Methods: A data-driven framework integrating feedstock characterization, experimental data, and literature benchmarks was applied to evaluate catalytic fast pyrolysis and upgrading pathways for rice husk. Machine-learning-assisted correlation analysis and multi-objective optimization (NSGA-II) were used to benchmark key process variables, product yields, and fuel quality trade-offs. Findings: The technical foundation, built on detailed feedstock characterization, reveals that the CFP process yields ~46.9 wt% bio-oil, which is further refined to a 32.2 wt% biodiesel-equivalent yield. To enhance operational precision, various ML algorithms were evaluated; the Extra Trees model coupled with Non-dominated Sorting Genetic Algorithm II (NSGA-II) demonstrated superior predictive performance with an R2 of up to 0.96 and an RMSE <1 MJ/kg for calorific value prediction, showing strong accuracy for O/C ratio and CO2 fraction estimation. Techno-economic assessment confirms the framework's viability for pilot-scale implementation, projecting a positive NPV of IDR 50.4 million, an IRR of 23.78%, and a 2.93-year payback period. While sensitivity analysis highlights exchange rate volatility as a key financial risk, the model successfully positions farmers as active stakeholders in the value chain. Conclusion: The integrated CFP–ML framework demonstrates technical and economic viability for decentralized rice husk valorization, positioning farmers as active stakeholders in the renewable energy value chain and offering a scalable, bottom-up solution to support Indonesia’s energy transition in agricultural regions. Novelty/Originality of this article: By synthesizing mechanistic process design with data-driven decision support, this study provides a scalable, bottom-up pathway for decentralized waste-to-energy systems in agricultural regions.

References

Agostini, A., De Michelis, G., Divitini, M., Grasso, M. A., & Snowdon, D. (2002). Design and deployment of community systems: reflections on the Campiello experience. Interacting with computers, 14(6), 689-712. https://doi.org/10.1016/S0953-5438(02)00016-4

Antonakou, E., Lappas, A., Nilsen, M. H., Bouzga, A., & Stocker, M. (2006). Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals. Fuel, 85, 2202–2212. https://doi.org/10.1016/j.fuel.2006.03.021

Bakti Barito Foundation. (n.d.). Chandra Asri. Bakti Barito Foundation. https://baktibarito.com/id/business-unit/chandra-asri-group/

BPS. (2024). Produksi Padi menurut Provinsi (ton), 2023. Badan Pusat Statistik. https://www.bps.go.id/indicator/55/177/1/produksi-padi-menurut-provinsi.html

Balat, M., Balat, M., Kırtay, E., & Balat, H. (2009). Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Conversion and Management, 50(12), 3147–3157. https://doi.org/10.1016/j.enconman.2009.08.014

Beamon, B. M. (1998). Supply chain design and analysis:: Models and methods. International journal of production economics, 55(3), 281-294. https://doi.org/10.1016/S0925-5273(98)00079-6

Ben, H., & Ragauskas, A. J. (2011). Pyrolysis of kraft lignin with additives. Energy & Fuels, 25, 4662–4668. https://doi.org/10.1021/ef2007613

Cheng, S., Wei, L., Alsowij, M. R., Corbin, F., Julson, J., Boakye, E., & Raynie, D. (2018). In situ hydrodeoxygenation upgrading of pine sawdust bio-oil to hydrocarbon biofuel using Pd/C catalyst. Journal of the Energy Institute, 91(2), 163-171. https://doi.org/10.1016/j.joei.2017.01.004

Demirbas, A., & Arin, G. (2002). An overview of biomass pyrolysis. Energy Sources, 24(5), 471–482. https://doi.org/10.1080/00908310252889979

Dickerson, T., & Soria, J. (2013). Catalytic fast pyrolysis: A review. Energies, 6(1), 514–538. https://doi.org/10.3390/en6010514

Elliott, D. C., Beckman, D., Bridgwater, A. V., Diebold, J. P., Gevert, S. B., & Solantausta, Y. (1991). Developments in direct thermochemical liquefaction of biomass: 1983-1990. Energy & Fuels, 5(3), 399–410. https://doi.org/10.1021/ef00027a008

Efomah, A. N., & Gbabo, A. (2015). The Physical , Proximate and Ultimate Analysis of Rice Husk Briquettes Produced from a Vibratory Block Mould Briquetting Machine. International Journal of Innovative Science, Engineering & Technology, 2(5), 814-822. https://ijiset.com/vol2/v2s5/IJISET_V2_I5_121.pdf

Fermoso, J., Pizarro, P., Coronado, J. M., & Serrano, D. P. (2017). Advanced biofuels production by upgrading of pyrolysis bio‐oil. Wiley Interdisciplinary Reviews: Energy and Environment, 6(4), e245. https://doi.org/10.1002/wene.245

Hansen, S., Mirkouei, A., & Diaz, L. A. (2020). A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels. Renewable and Sustainable Energy Reviews, 118, 109548. https://doi.org/10.1016/j.rser.2019.109548

Hermeling, C., & Mennel, T. (2008). Sensitivity analysis in economic simulations: A systematic approach. None. http://ub-madoc.bib.uni-mannheim.de/2100

Katikaneni, S. P. R., Adjaye, J. D., & Bakhshi, N. N. (1997). Conversion of canola oil to various hydrocarbons over Pt/HZSM-5 bifunctional catalyst. Canadian Journal of Chemical Engineering, 75, 391–401. https://doi.org/10.1002/cjce.5450750215

Küçük, M., & Demirbaş, A. (1997). Biomass conversion processes. Energy Conversion and Management, 38(2), 151–165. https://doi.org/10.1016/0196-8904(96)00031-3

Jahromi, H., & Agblevor, F. A. (2018). Hydrodeoxygenation of aqueous-phase catalytic pyrolysis oil to liquid hydrocarbons using multifunctional nickel catalyst. Industrial & Engineering Chemistry Research, 57(39), 13257-13268. https://pubs.acs.org/doi/abs/10.1021/acs.iecr.8b02807

Jerzak, W., Acha, E., & Li, B. (2024). Comprehensive review of biomass pyrolysis: conventional and advanced technologies, reactor designs, product compositions and yields, and Techno-Economic analysis. Energies, 17(20), 5082. https://doi.org/10.3390/en17205082

Lachos-Perez, D., Martins-Vieira, J. C., Missau, J., Anshu, K., Siakpebru, O. K., Thengane, S. K., & Bertuol, D. A. (2023). Review on biomass pyrolysis with a focus on bio-oil upgrading techniques. Analytica, 4(2), 182-205. https://doi.org/10.3390/analytica4020015

Lim, X. Y., & Andresen, J. M. (2011). Pyro-catalytic deoxygenated bio-oil from palm oil empty fruit bunch and fronds with boric oxide in a fixed-bed reactor. Fuel Processing Technology, 92, 1796–1804. https://doi.org/10.1016/j.fuproc.2011.04.033

Lu, Q., Zhang, Z.-F., Dong, C.-Q., & Zhu, X.-F. (2010). Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: An analytical Py-GC/MS study. Energies, 3, 1805–1820. https://doi.org/10.3390/en3111805

Mu, W., Ben, H., Du, X., Zhang, X., Hu, F., Liu, W., & Deng, Y. (2014). Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds. Bioresource Technology, 173, 6–10. https://doi.org/10.1016/j.biortech.2014.09.067

Pagano, M., Hernando, H., Cueto, J., Serrano, D. P., & Moreno, I. (2025).Maximizing aromatic hydrocarbon production through catalytic pyrolysis of lignocellulosic residues over ZSM-5 zeolite using both batch and continuous reaction systems. Bioresource Technology, 423, 132212. https://doi.org/10.1016/j.biortech.2025.132212

Pan, F., Lu, X., Zhu, Q., Zhang, Z., Yan, Y., Wang, T., & Chen, S. (2015). Direct synthesis of HZSM-5 from natural clay. Journal of Materials Chemistry A, 3(7), 4058–4066. https://doi.org/10.1039/C4TA05791K

Sanna, A., Vispute, T. P., & Huber, G. W. (2015). Hydrodeoxygenation of the aqueous fraction of bio-oil with Ru/C and Pt/C catalysts. Applied Catalysis B: Environmental, 165, 446–456. https://doi.org/10.1016/j.apcatb.2014.10.013

Shahbeik, H., Rafiee, S., Shafizadeh, A., Jeddi, D., Jafary, T., Lam, S. S., ... & Aghbashlo, M. (2022). Characterizing sludge pyrolysis by machine learning: towards sustainable bioenergy production from wastes. Renewable Energy, 199, 1078-1092 https://doi.org/10.1016/j.renene.2022.09.022

Shapiro, J. F. (1998). Bottom-up vs. top-down approaches to supply chain management and modeling. https://dspace.mit.edu/bitstream/handle/1721.1/2710/SWP-4017-40963281.pdf

Tsai, W. T., Lee, M. K., & Chang, Y. (2007). Fast pyrolysis of rice husk: Product yields and compositions. Bioresource technology, 98(1), 22-28. https://doi.org/10.1016/j.biortech.2005.12.005

Vershinina, K., Nyashina, G., & Strizhak, P. (2022). Combustion, pyrolysis, and gasification of Waste-Derived fuel slurries, Low-Grade liquids, and High-Moisture waste: review. Applied Sciences, 12(3), 1039. https://doi.org/10.3390/app12031039

Wang, H., Meyer, P. A., Santosa, D. M., Zhu, C., Olarte, M. V., Jones, S. B., & Zacher, A. H. (2021). Performance and techno-economic evaluations of co-processing residual heavy fraction in bio-oil hydrotreating. Catalysis Today, 365, 357-364. https://doi.org/10.1016/j.cattod.2020.08.035

Wang, Z., Wang, F., Cao, J., & Wang, J. (2010). Pyrolysis of pine wood in a slowly heating fixed-bed reactor: Potassium carbonate versus calcium hydroxide as a catalyst. Fuel Processing Technology, 91, 942–950. https://doi.org/10.1016/j.fuproc.2009.09.015

Wahib, M., & Susanto, A. (2024). Pendidikan berbasis komunitas: Membangun ekonomi kerakyatan melalui keterlibatan masyarakat. Journal of Economics, Business, Management, Accounting and Social Sciences, 2(6), 330-341. https://doi.org/10.63200/jebmass.v2i6.156

Weerachanchai, P., Tangsathitkulchai, C., & Tangsathitkulchai, M. (2007). Fuel properties and chemical compositions of bio-oils from biomass pyrolysis (No. 2007-01-2024). SAE Technical Paper. https://doi.org/10.4271/2007-01-2024

Downloads

Published

2026-01-27

How to Cite

Makarim, H. Y., Anrizky, M. D., Attoriq, B., Koyongian, D. E., & Negoro, R. A. (2026). Data-driven optimization of rice husk waste management through an integrated machine learning and community-based pyrolysis approach. Journal of Innovation Materials, Energy, and Sustainable Engineering, 3(2), 125–149. https://doi.org/10.61511/jimese.v3i2.2026.2617

Issue

Section

Articles

Citation Check