Innovation in regeneration of graphene and nmc electrodes from lithium-ion battery waste through an environmentally friendly method
DOI:
https://doi.org/10.61511/jimese.v3i1.2025.2157Keywords:
alkali-acid, lithium-ion battery recycling, low-temperature molten salt methods, regeneration of graphene and nmcAbstract
Background: The problem of lithium-ion battery (LIB) waste that has not been optimally addressed poses serious risks to the environment and strengthens dependence on primary metal mining. The limited availability of efficient and environmentally friendly recycling methods encourages the need for innovative approaches in the recovery of active materials from used electrodes. This study aims to evaluate the potential of a combination of two alkali-acid regeneration methods for graphene- based anodes and low-temperature molten salt for Nickel Manganese Cobalt (NMC) cathodes as a sustainable strategy in LIB waste treatment. Methods: The study was conducted through a critical literature review of various national and international scientific publications, focusing on the purification effectiveness, morphological characteristics, crystal structure, and electrochemical performance of the regenerated materials. Findings: The analysis results show that the alkali-acid method is effective in selectively removing impurities and is able to increase the specific capacity of the anode to 359 mAh/g, approaching the theoretical capacity of commercial graphene . Meanwhile, the NMC cathode regenerated through the molten salt method and combined with graphene through a simple solid-state mixing showed a capacity of 158.1 mAh/g at a current of 0.5C with good cycle stability. The integration of these two methods synergistically improves electron conductivity, cycle efficiency, and electrode structural stability. In addition to its technical advantages, this approach also utilizes relatively safe and readily available chemicals, making it relevant for both laboratory and industrial applications. The proposed process is competitive with commercial materials and has the potential to be implemented in the economical and industrial-scale remanufacturing of 18650 batteries. Conclusion: These findings significantly contribute to strengthening the battery recycling ecosystem in Indonesia and support the achievement of sustainable energy targets. Furthermore, reducing the volume of hazardous and toxic waste (B3) and optimizing the reuse of high-value materials support the implementation of circular economy principles that align with national policies in the energy and environmental sectors. Novely/Originality of this article: The novelty of this research lies in the integration of two selective and environmentally friendly regeneration methods in one processing system, which has not been widely developed in previous literature, thus offering a new applicable framework for LIB waste processing towards sustainable industrialization.
References
AP News. (2023, May 24). Environmental concerns grow as Indonesia ramps up nickel production. https://apnews.com/article/c7f9e28b3a59f0113e1f96cd9b154067
Bird, L., Lin, M., & Schamm, K. (2022). Global approaches to managing lithium-ion battery recycling and recovery. Energy Policy, 160, 112677. https://doi.org/10.1016/j.enpol.2021.112677
Desviandini, R. A., & Karyana, Y. (2022). Proyeksi penduduk Indonesia sampai tahun 2060 dengan data dasar Sensus Penduduk 2020 dan asumsi laju pertumbuhan penduduk 1,25%. Bandung Conference Series: Statistics, 2(2). https://doi.org/10.29313/bcss.v2i2.4009
El Mounafia, N., Aannir, M., Hakkou, R., Zaabout, A., & Saadoune, I. (2023). Comparative performance analysis of NMC cathodes elaborated from recovered and commercial raw materials: A low-temperature molten salt approach for extracting critical metals from end-of-life lithium-ion batteries. Materials Today Communications, 36, 106603. https://doi.org/10.1016/j.mtcomm.2023.106603
El Moutchou, S., Aziam, H., Mansori, M., & Saadoune, I. (2021). Thermal stability of lithium-ion batteries: Case study of NMC811 and LFP cathode materials. Materials Today: Proceedings, 51, 2375–2380. https://doi.org/10.1016/j.matpr.2022.02.324
ESDM. (2023). Handbook of energy and economic statistics of Indonesia 2022. Ministry of Energy and Mineral Resources Republic of Indonesia.
Fan, E., Li, L., Lin, J., Wu, J., Yang, J., Wu, F., & Chen, R. (2019). Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 7(19), 16344–16354. https://doi.org/10.1021/acssuschemeng.9b03054
Febriananingsih, N. (2019). Tata kelola energi terbarukan di sektor ketenagalistrikan dalam kerangka pembangunan hukum nasional. Majalah Hukum Nasional, 49(2), 177–194. https://doi.org/10.33331/mhn.v49i2.31
Fortune. (2025, March 4). Indonesia’s nickel strategy is reshaping the EV battery supply chain. https://fortune.com/asia/2025/03/04/indonesia-nickel-exports-downstreaming-ev-battery
Hamed, S., Obrezkov, F., Huotari, S., Colalongo, M., Mousavihashemi, S., & Kallio, T. (2024). Optimized NMC622 electrodes with a high content of the active material: A comprehensive study. Journal of Power Sources, 608, 234549. https://doi.org/10.1016/j.jpowsour.2024.234549
Hsu, T.-H., & Liu, W.-R. (2020). Effects of graphene nanosheets with different lateral sizes as conductive additives on the electrochemical performance of LiNi₀.₅Co₀.₂Mn₀.₃O₂ cathode materials for Li-ion batteries. Polymers, 12(5), 1162. https://doi.org/10.3390/polym12051162
Indonesia Business Post. (2023). IBC to build EV battery recycling plant by 2031, supporting nickel sustainability. https://indonesiabusinesspost.com/3595/corporate-affairs/ibc-to-build-ev-battery-recycling-plant-by-2031-supporting-nickel-sustainability
Ji, S., Zhang, A., Hua, W., Yan, S., & Chen, X. (2024). Regeneration of graphite from spent lithium-ion batteries as anode materials through stepwise purification and mild temperature restoration. Battery Energy, 3(3). https://doi.org/10.1002/bte2.20230067
Jiao, L., Liu, Z., Sun, Z., Wu, T., Gao, Y., Li, H., Li, F., & Niu, L. (2018). An advanced lithium ion battery based on a high quality graphitic graphene anode and a Li[Ni₀.₆Co₀.₂Mn₀.₂]O₂ cathode. Electrochimica Acta, 259, 417–426. https://doi.org/10.1016/j.electacta.2017.10.155
Jin, S., Mu, D., Lu, Z., Li, R., Liu, Z., Wang, Y., Tian, S., & Dai, C. (2022). A comprehensive review on the recycling of spent lithium-ion batteries: Urgent status and technology advances. Journal of Cleaner Production, 340, 130535. https://doi.org/10.1016/j.jclepro.2022.130535
Kanbur, Y., Reinecke, A., & Koşan, M. (2024). The role of water on the oxidation process of graphene oxide structures. ResearchGate. https://www.researchgate.net/publication/381447937_The_Role_of_Water_on_the_Oxidation_Process_of_Graphene_Oxide_Structures
Kementerian Energi dan Sumber Daya Mineral. (2017). Peraturan Menteri Energi dan Sumber Daya Mineral Nomor 50 Tahun 2017 tentang Pemanfaatan Energi Baru Terbarukan. https://jdih.esdm.go.id/
Kementerian Lingkungan Hidup dan Kehutanan. (2019). Peraturan Menteri LHK Nomor P.75 Tahun 2019 tentang Peta Jalan Pengurangan Sampah oleh Produsen. https://peraturan.go.id/
Kementerian Lingkungan Hidup dan Kehutanan. (2021). Peraturan Menteri LHK Nomor 6 Tahun 2021 tentang Tata Cara dan Persyaratan Pengelolaan Limbah B3. https://peraturan.go.id/
Koong, J. K., & Demopoulos, G. P. (2024). Tuning molten-salt-mediated calcination in promoting single-crystal synthesis of Ni-rich LiNixMnyCozO₂ cathode materials. Batteries, 10(11), 387. https://doi.org/10.3390/batteries10110387
Kosenko, A., Pushnitsa, K., Chernyavsky, V., Novikov, P., & Popovich, A. A. (2024). Graphite regeneration and NCM cathode type synthesis from retired LIBs by closed-loop cycle recycling technology of lithium-ion batteries. Energies, 17(22). https://doi.org/10.3390/en17225570
Kumar, A., Holuszko, M., & Espinosa, D. C. R. (2021). Recycling of spent lithium-ion batteries: A review of current processes and technologies. Journal of Hazardous Materials, 403, 123637. https://doi.org/10.1016/j.jhazmat.2020.123637
Lan, Y., Li, X., Zhou, G., Yao, W., Cheng, H. M., & Tang, Y. (2024). Direct regenerating cathode materials from spent lithium-ion batteries. Advanced Science, 11(1). https://doi.org/10.1002/advs.202304425
Lee, J., Kim, H., & Park, Y. (2021). High-performance graphene anodes for lithium-ion batteries: A review. Journal of Energy Chemistry, 59, 1–15. https://doi.org/10.1016/j.jechem.2020.11.001
Li, L., Bian, Y., Zhang, X., & Zhang, X. (2020). Environmentally friendly recycling of Li-ion batteries: Molten-salt-based approaches. Green Energy & Environment, 5(4), 390–403. https://doi.org/10.1016/j.gee.2019.10.007
Li, P., Luo, S., Zhang, L., Liu, Q., Wang, Y., Lin, Y., Xu, C., Guo, J., Cheali, P., & Xia, X. (2024). Progress, challenges, and prospects of spent lithium-ion batteries recycling: A review. Journal of Energy Chemistry, 89. https://doi.org/10.1016/j.jechem.2023.10.012
Li, Y., Lv, W., Zhao, H., Xie, Y., Ruan, D., & Sun, Z. (2022). Regeneration of anode materials from complex graphite residue in spent lithium-ion battery recycling process. Green Chemistry, 24(23). https://doi.org/10.1039/d2gc02439j
Liu, H., Yin, J., Zhao, J., Wen, Q., Li, J., Wang, Z., & Wang, G. (2024a). Experimental investigation on the purification of natural flake graphite with auxiliary alkali–acid method. JOM, 76(6), 2586–2594. https://doi.org/10.1007/s11837-024-06493-7
Liu, H., Yin, J., Zhao, J., Wen, Q., Li, J., Wang, Z., & Wang, G. (2024b). Experimental investigation on the purification of natural flake graphite with auxiliary alkali–acid method. JOM, 76(6), 2586–2594. https://doi.org/10.1007/s11837-024-06493-7
Luu, N. S., Lim, J. M., Torres-Castanedo, C. G., Park, K. Y., Moazzen, E., He, K., Meza, P. E., Li, W., Downing, J. R., Hu, X., Dravid, V. P., Barnett, S. A., Bedzyk, M. J., & Hersam, M. C. (2021). Elucidating and mitigating high-voltage interfacial chemomechanical degradation of nickel-rich lithium-ion battery cathodes via conformal graphene coating. ACS Applied Energy Materials, 4(10). https://doi.org/10.1021/acsaem.1c01995
Marchesini, S., Reed, B. P., Jones, H., Matjacic, L., Rosser, T. E., Zhou, Y., Brennan, B., Tiddia, M., Jervis, R., Loveridge, M. J., Raccichini, R., Park, J., Wain, A. J., Hinds, G., Gilmore, I. S., Shard, A. G., & Pollard, A. J. (2022). Surface analysis of pristine and cycled NMC/graphite lithium-ion battery electrodes: Addressing the measurement challenges. ACS Applied Materials & Interfaces, 14(47). https://doi.org/10.1021/acsami.2c13636
Mubarok, M. W. S. U., & Kartini, E. (2024). Nickel diplomacy: Strengthening Indonesia’s role in global battery and electric vehicles supply chain. AIP Conference Proceedings, 3213(1). https://doi.org/10.1063/5.0240397
Nugroho, A. P., & Kurniawan, D. (2021). Potensi pembangkit listrik tenaga surya rooftop di Gedung Mohammad Hatta, Universitas Proklamasi 45. Jurnal Offshore: Oil, Production Facilities and Renewable Energy, 5(1). https://doi.org/10.30588/jo.v5i1.935
Qi, C., Wang, S., Zhu, X., Zhang, T., Gou, Y., Xie, Z., Jin, Y., Wang, Y., Song, L., & Zhang, M. (2022). Environmental-friendly low-cost direct regeneration of cathode material from spent LiFePO₄. Journal of Alloys and Compounds, 924. https://doi.org/10.1016/j.jallcom.2022.166612
Setyawati, R. B., Stulasti, K. N. R., Azinuddin, Y. R., Suci, W. G., Aliwarga, H. K. (Kiwi), Dyartanti, E. R., & Purwanto, A. (2024). High power and thermal-stable of graphene modified LiNi₀.₈Mn₀.₁Co₀.₁O₂ cathode by simple method for fast charging-enable lithium ion battery. Results in Engineering, 21. https://doi.org/10.1016/j.rineng.2023.101651
Shangguan, X., Xiao, G., Cui, Z., & Cui, G. (2019). Additive-assisted novel dual-salt electrolyte addresses wide temperature operation of lithium–metal batteries. Small, 15(12), 1900341. https://doi.org/10.1002/smll.201900341
Son, S.-B., Robertson, D., & Tsai, Y. (2020). Systematic study of the cathode compositional dependency of cross-talk behavior in Li-ion battery. Journal of The Electrochemical Society, 167(16), 160502. https://doi.org/10.1149/1945-7111/abc123
Sonu, Rani, G. M., Pathania, D., Abhimanyu, Umapathi, R., Rustagi, S., Huh, Y. S., Gupta, V. K., Kaushik, A., & Chaudhary, V. (2023). Agro-waste to sustainable energy: A green strategy of converting agricultural waste to nano-enabled energy applications. Science of the Total Environment, 875. https://doi.org/10.1016/j.scitotenv.2023.162667
Sun, Y., Wang, Y., & Li, X. (2024). Ultrasonication-assisted exfoliation of graphene with high crystallinity: XRD and morphological insights. arXiv. https://arxiv.org/abs/2412.20123
Tsukasaki, H., Fukuda, W., Morimoto, H., & Tatsumisago, M. (2018). Thermal behavior and microstructures of cathodes for liquid electrolyte-based lithium batteries. Scientific Reports, 8, 16148. https://doi.org/10.1038/s41598-018-34374-3
U.S. Geological Survey. (2023). Mineral Commodity Summaries 2023. U.S. Geological Survey.
Vu, T. T., La, D. D., Le, L. V., Pham, T. K., Nguyen, M. A., Nguyen, T. H., Dang, T. D., Um, M. J., Chung, W., & Nguyen, D. D. (2024). Purification of spherical graphite as anode for Li-ion battery: A comparative study on the purifying approaches. Micromachines, 15(7). https://doi.org/10.3390/mi15070827
Wang, H., Feng, Q., Liu, K., Zuo, K., & Tang, X. (2018). A novel technique for microcrystalline graphite beneficiation based on alkali-acid leaching process. Separation Science and Technology, 53(6). https://doi.org/10.1080/01496395.2017.1405986
Wang, X., Gaustad, G., Babbitt, C. W., Bailey, C., Ganter, M. J., & Landi, B. J. (2014). Economic and environmental characterization of an evolving Li-ion battery waste stream. Journal of Environmental Management, 135, 126–134. https://doi.org/10.1016/j.jenvman.2014.01.021
Wei, G., Liu, Y., Jiao, B., Chang, N., Wu, M., Liu, G., Lin, X., Weng, X. F., Chen, J., Zhang, L., Zhu, C., Wang, G., Xu, P., Di, J., & Li, Q. (2023). Direct recycling of spent Li-ion batteries: Challenges and opportunities toward practical applications. iScience, 26(9). https://doi.org/10.1016/j.isci.2023.107676
World Bank. (2021). Indonesia economic prospects: Boosting the recovery. World Bank Group.
Yang, S., Wang, X., Chen, Q., & Yang, X. (2012). Effects of complexants on [Ni₁/₃Co₁/₃Mn₁/₃]CO₃ morphology and electrochemical performance of LiNi₁/₃Co₁/₃Mn₁/₃O₂. Journal of Solid State Electrochemistry, 16(2), 619–626. https://doi.org/10.1007/s10008-011-1356-1
Yi, C., Zhou, L., Wu, X., Sun, W., Yi, L., & Yang, Y. (2021). Technology for recycling and regenerating graphite from spent lithium-ion batteries. Chinese Journal of Chemical Engineering, 39, 124–134. https://doi.org/10.1016/j.cjche.2021.09.014
Yu, J., Lin, M., Tan, Q., & Li, J. (2021). High-value utilization of graphite electrodes in spent lithium-ion batteries: From 3D waste graphite to 2D graphene oxide. Journal of Hazardous Materials, 401, 123715. https://doi.org/10.1016/j.jhazmat.2020.123715
Yu, L., Wei, Y., Sun, H.-X., Mahdi, A. K., Pinzon Arteaga, C. A., Sakurai, M., & Wu, J. (2021). Derivation of intermediate pluripotent stem cells amenable to primordial germ cell specification. Cell Stem Cell, 28(3), 550–567.e12. https://doi.org/10.1016/j.stem.2020.11.003
Zhang, X., Sun, H., Peng, T., Zeng, L., & Liu, B. (2024). Purification mechanism of microcrystalline graphite and dissolution of non-carbon impurity during alkali autoclave–acid leaching. Physics and Chemistry of Minerals, 51(1), Article 25. https://doi.org/10.1007/s00269-024-01290-9
Zhang, Y., Chen, Z., Xie, K., Chen, X., Hu, Y., & Ma, W. (2023a). Purification of waste graphite from crucibles used in photovoltaic crystallization by an alkali-acid method. Metals, 13(7). https://doi.org/10.3390/met13071180
Zhao, S., Cheng, S., Xing, B., Ma, M., Shi, C., Cheng, G., Meng, W., & Zhang, C. (2022). High efficiency purification of natural flake graphite by flotation combined with alkali-melting acid leaching: Application in energy storage. Journal of Materials Research and Technology, 21, 2803–2814. https://doi.org/10.1016/j.jmrt.2022.11.001
Zhou, J., Zhou, X., Yu, W., Shang, Z., & Xu, S. (2024). Towards greener recycling: Direct repair of cathode materials in spent lithium-ion batteries. Electrochemical Energy Reviews, 7(1), 31–61. https://doi.org/10.1007/s41918-023-00206-5
Zhu, H., Jie, L., Chen, Z., & Lai, Y. (2014). Molten salt synthesis and electrochemical properties of LiNi₁/₃Co₁/₃Mn₁/₃O₂ cathode materials. Synthetic Metals, 192, 1–6. https://doi.org/10.1016/j.synthmet.2014.03.011
Zhuang, Z., Yang, L., Ju, B., Qin, S., & Tu, F. (2020). Engineering LiNi₀.₅Co₀.₂Mn₀.₃O₂/poly(propylene carbonate) interface by graphene oxide modification for all‐solid‐state lithium batteries. Energy Storage Materials, 25, 1–10. https://doi.org/10.1016/j.ensm.2019.12.001
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Jesaya Hansel

This work is licensed under a Creative Commons Attribution 4.0 International License.