Mycorrhizal symbiosis and natural dye waste organic fertilizer: Enhancing growth and yield in Indigofera tinctoria
DOI:
https://doi.org/10.61511/jek.v2i1.2024.930Keywords:
indigofera waste, mycorrhiza, organic fertilizer, soil fertilityAbstract
Background: Indigofera tinctoria, commonly known as true indigo, is a plant widely used in the textile industry for its natural indigo dye, which produces a rich blue color for fabrics. I. tinctoria, known for its natural bluish-purple dye, generates 10% dye and 90% waste during extraction, requiring effective waste management. This study aimed to optimize organic fertilizer and mycorrhiza doses from I. tinctoria waste for enhancing soil fertility in arid regions. Methods: The study was conducted from May to December 2020 in Puron Village, Bulu District, Sukoharjo Regency. A factorial Completely Randomized Block Design (CRBD) with 2 factors was employed. The first factor consisted of 5 levels of I. tinctoria organic fertilizer treatments: 0, 100, 200, 300, and 400 g per plant. The second factor included 3 levels of mycorrhiza treatments: 0, 10, and 20 g per plant. Variables observed included mycorrhizal infection on roots, plant growth rate, and yield (fresh leaf and shoot weight of I. tinctoria ). Data analysis utilized ANOVA at a 5% significance level followed by Duncan Multiple Range Test (DMRT). Results: The results indicated that organic fertilizer from natural dye waste at a dosage of 200 g per plant increased the percentage of mycorrhizal-infected roots and boosted shoot weight by 63.27% at 8 weeks after planting (WAP). Mycorrhiza at 10 g per plant increased mycorrhizal infection percentage and enhanced shoot weight by 45.98% at 4 WAP. The combination of I. tinctoria extraction waste organic fertilizer at 200 g per plant and mycorrhizal at 10 g per plant showed interaction, significantly increasing the growth of root nodules of I. tinctoria by 84.04% at 12 WAP. Conclusion: The integration of organic fertilizer derived from indigo dye waste and mycorrhiza presents a promising strategy for enhancing I. tinctoria growth and productivity. Novelty/Originality of this Study: This study is distinctive in its demonstration of the effective use of I. tinctoria extraction waste as an organic fertilizer, aligning with zero-waste principles and contributing to improvements in plant growth and soil fertility. Furthermore, it investigates the synergistic effects of mycorrhizal associations on enhancing nutrient absorption and overall productivity of I. tinctoria , an aspect that has not been thoroughly explored in prior research.
References
Aleixo, S., Gama, R. A. C., Gama, R. E. F., Campello, E., Silva, E. C., & Schripsema, J. (2020). Can soil phosphorus availability in tropical forest systems be increased by nitrogen-fixing leguminous trees?. The Science of the Total Environment, 712, 136405. https://doi.org/10.1016/j.scitotenv.2019.136405
Alemneh, A. A., Zhou, Y., Ryder, M. H., & Denton, M. D. (2020). Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizobial symbioses. Journal of Applied Microbiology, 129(5), 1133–1156. https://doi.org/10.1111/jam.14754
Anderson, R., Keshwani, D., Guru, A., Yang, H., Irmak, S., & Subbiah, J. (2018). An integrated modeling framework for crop and biofuel systems using the DSSAT and GREET models. Environmental Modelling & Software, 108, 40–50. https://doi.org/10.1016/j.envsoft.2018.07.004
Ansiga, R. E., Rumambi, Kaligis, D., Mansur, I., & Kaunang, W. (2017). Ekspolorasi fungi mikoriza arbuskula (FMA) pada rizosfir hijauan pakan. Zootek, 37(1), 167-178. https://doi.org/10.35792/zot.37.1.2017.14463
Balittan [Balai Penelitian Tanah]. (2009). Analisis kimia tanah, tanaman, air, dan pupuk. Balai Penelitian Tanah.
Brigido, C., Menéndez, E., Paço, A., Glick, B. R., Belo, A., Félix, M. R., Oliveira, S., & Carvalho, M. (2019). Mediterranean native leguminous plants: a reservoir of endophytic bacteria with potential to enhance chickpea growth under stress conditions. Microorganisms, 7(10), 392. https://doi.org/10.3390/microorganisms7100392
Budiastuti, M. T. S., Pujiasmanto, B., Sulistyo, T. D., Nurmalasari, A. I., & Setyaningrum, D. (2020a). Pemanfaatan limbah ekstraksi Indigofera tinctoria L. sebagai pupuk organik pada usaha batik pewarna alami di Sukoharjo. PRIMA: Journal of Community Empowering and Services, 4(2), 109-119. https://doi.org/10.20961/prima.v4i2.44013
Budiastuti, M. T. S., Purnomo, D., Supriyono, Pujiasmanto, B., & Desy, S. (2020b). Effects of light intensity and coinoculation of arbuscular mycorrhizal fungi and rhizobium on root growth and nodulation of Indigofera tinctoria. Sains Tanah Jurnal of Soil Science and Agroclimatology, 17(2), 94-99. https://doi.org/10.20961/stjssa.v17i2.40065
Budiastuti, M. T. S., Supriyono, S., Manurung, I. R., Setyaningrum, D., Nurmalasari, A. I., & Arista, N. I. D. (2021). The role of organic fertilizer from natural dye waste and mycorrhizal inoculation on the growth of Indigofera tinctoria. IOP Conference Series: Earth and Environmental Science, 905, 012011. https://doi.org/10.1088/1755-1315/905/1/012011
Chauhan, S., Mahawar, S., Jain, D., Udpadhay, S. K., Mohanty, S. R., Singh, A., & Maharjan, E. (2022). Boosting sustainable agriculture by arbuscular mycorrhiza under stress condition: Mechanism and future prospective. Biomedical Research International, 2022, 5275449. https://doi.org/10.1155/2022/5275449
Christophe, H. L., Albert, N., Martin, Y., & Mbaiguinam, M. (2019). Effect of organic fertilizers rate on plant survival and mineral properties of Moringa oleifera under greenhouse conditions. International Jurnal of Recycling of Organic Waste in Agriculture, 8, 123-130. https://doi.org/10.1007/s40093-019-0282-6
Della, M. I. F., Godeas, A. M., & Scervino, J. M. (2020). In vivo modulation of arbuscular mycorrhizal symbiosis and soil quality by fungal P solubilizers. Jurnal Microbial Ecology, 79(1), 21-29. https://doi.org/10.1007/s00248-019-01396-6
Hajoeningtijas, O. D. (2009). Ketergantungan tanaman terhadap mikoriza sebagai kajian potensi pupuk hayati mikoriza pada budidaya tanaman berkelanjutan. Jurnal Ilmu0Ilmu Pertanian, 11(2), 125-136. https://jurnalnasional.ump.ac.id/index.php/AGRITECH/article/view/982
Hernández, M. A. S., Leifheit, E. F., Ingraffia, R., & Rilig, M. C. (2019). Subsoil arbuscular mycorrhizal fungi for sustainability and climate-smart agriculture: a solution right under our feet?. Jurnal Frontiers in Microbiology, 10, 744. https://doi.org/10.3389/fmicb.2019.00744
Kermah, M., Franke, A. C., Adjei-Nsiah, S., Ahiabor, B. D. K., Abaidoo, R. C., & Giller, K. E. (2018). N2-fixation and N contribution by grain legumes under different soil fertility status and cropping systems in the Guinea savanna of Northern Ghana. Jurnal Agriculture, Ecosystems & Environment, 261, 201-210. https://doi.org/10.1016/j.agee.2017.08.028
Laksono, J., & Karyono, T. (2017). Pemberian pupuk fosfat dan fungi mikoriza arbuskular terhadap pertumbuhan tanaman legum pohon (Indigofera zollingeriana). Jurnal Sain Peternakan Indonesia, 12(2), 165-170. https://doi.org/10.31186/jspi.id.12.2.165-170
Li, S., Fan, W., Xu, G., Cao, Y., Zhao, X., Hao, S., Deng, B., Ren, S., & Hu, S. (2023). Bio-organic fertilizers improve Dendrocalamus farinosus growth by remolding the soil microbiome and metabolome. Frontiers in Microbiology, 14, 1117355. https://doi.org/10.3389/fmicb.2023.1117355
Minardi, S., Jauhari, S., & Sukoco. (2011). Pengaruh bahan organik dan pupuk fosfor terhadap ketersediaan dan serapan fosfor pada andisols dengan indikator tanaman jagung manis (Zea mays). Jurnal Ilmu Tanah Agroklimatologi, 8(1), 23-30. https://core.ac.uk/download/pdf/230908209.pdf
Morip, W., Anis, S. D., Telleng, M. M., & Sumolong, C. I. J. (2020). The effect of planting distance on the productivity of Indigofera zollingeriana in open areas. Journal of Zootec, 40(2), 714-723. https://doi.org/10.35792/zot.40.2.2020.30176
Palupi, N. P. (2015). Analisis kemasaman tanah dan C organik tanah bervegetasi alang-alang akibat pemberian pupuk kandang ayam dan pupuk kandang kambing. Jurnal Media Sains, 8(2), 182-188. https://lldikti11.kemdikbud.go.id/jurnal/pdf/d324635d-3092-11e8-9030-54271eb90d3b/
Putri, T. E., Yuliani, & Trimulyono, G. (2019). Penggunaan mikoriza vesikular arbuskular (MVA) genus glomus untuk meningkatkan pertumbuhan dan produksi tanaman kacang hijau (Vigna radiata) pada cekaman air. LenteraBio: Berkala Ilmiah Biologi, 8(2), 107-112. https://ejournal.unesa.ac.id/index.php/lenterabio/article/view/28622
Rahman, M. A., Parvin, M., Das, U., Ela, E. J., Lee, S. H., Lee, K. W., & Kabir, A. H. (2020). Arbuscular mycorrhizal symbiosis mitigates iron (fe)-deficiency retardation in alfalfa (Medicago sativa L.) through the enhancement of fe accumulation and sulfur-assisted antioxidant defense. International Journal of Molecular Sciences, 21(6), 2219. https://doi.org/10.3390/ijms21062219
Rini, M. V., Andriyyani, L., & Arif, M. A. S. (2020). Infectivity and effectiveness of the arbuscular mycorrhizal fungus gigaspora margarita on corn plants with different storage durations. Journal of Tropical Agro-Tech, 8(3), 453-459. http://dx.doi.org/10.23960/jat.v8i3.4331
Sari, S., & Indrawati, W. (2019). Aplikasi berbagai jenis pupuk organik terhadap karakter FMA pada rhizosfer tebu Bud chip. Jurnal Penelitian Pertanian Terapan, 17(3), 1-10. https://doi.org/10.25181/jppt.v19i1.1393
Setiawati, M. R., Suryatmana, P., & Simarmata, T. (2020). Diversity of microflora, microfauna, organic carbon content, and total nitrogen in paddy soil due to the application of azolla and biofertilizers. Journal of Soil and Climate, 18(1), 41-49. https://doi.org/10.24198/soilrens.v18i1.29041
Setyaningrum, D., Budiastuti, M. T. S., Pujiasmanto, B., Purnomo, D., & Supriyono. (2020). Light intensity and biofertilizers effect on natural indigo production and nutrient uptake of Indigofera tinctoria L. Indian Jurnal of Agricultural Research, 54(5), 578-584. https://doi.org/10.18805/IJARe.A-507
Sihta, F., Suyitno, Heru, W. A., & Tanding, R. (2018). Enhancing biogas quality of Indigofera plant waste through co-digestion with cow dung. MATEC Web of Conferences. https://doi.org/10.1051/matecconf/201815402001
Simanungkalit, R. D. M., Suriadikarta, D. A., Saraswati, R., Setyorini, D., & Hartatik, W. (2006). Organic and biofertilizers. Bogor (ID): Center for soil and agroclimate research and development
Sindhu, P. V., Kanakamany, M., Menon, S., & Seema, S. (2014). Glomalin and soil aggregation under stress tolerant Glomus spp. on different host plants. Jurnal of Tropical Agriculture, 52(2), 183-192. https://doi.org/10.1111/jta.2016.54.1.16
Sunaryo, Y., Herlinda, S., & Iriani, T. (2021). Influence of arbuscular mycorrhizal fungi on growth and chlorophyll contents of Acacia auriculiformis A. Cunn. ex Benth. Biosaintifika: Jurnal of Biology & Biology Education, 13(1), 56-61. https://doi.org/10.15294/biosaintifika.v13i1.28215
Tatsumi, C., Taniguchi, T., Du, S., Yamanaka, N., & Tateno, R. (2020). Soil nitrogen cycling is determined by the competition between mycorrhiza and ammonia-oxidizing prokaryotes. Journal of Ecology, 101(3), e02963. https://doi.org/10.1002/ecy.2963
Unuofin, F. O., & Siswana, M. (2019). Enhancing organic waste decomposition with addition of phosphorus and calcium through different sources. International Journal of Recycling of Organic Waste in Agriculture, 8, 139–150. https://doi.org/10.1007/s40093-018-0239-1
Wahab, A., Muhammad, M., Munir, A., Abdi, G., Zaman, W., Ayaz, A., Khizar, C., & Reddy, S. P. P. (2023). Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants (Basel), 12(17), 3102. https://doi.org/10.3390/plants12173102
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2024 Nor Isnaeni Dwi Arista, Maria Theresia Sri Budiastuti, Supriyono, Aprilia Ike Nurmalasari, Desy Setyaningrum, Ida Rumia Manurung
This work is licensed under a Creative Commons Attribution 4.0 International License.