Peatland wetness as an indicator of fire occurrence in Forest and Land Fires (FLFs)
DOI:
https://doi.org/10.61511/jek.v2i1.2024.873Keywords:
early detection, forest land fires, hotspots, mitigation, peatland wetnessAbstract
Background: Peatland ecosystems play an important role in the hydrological cycle and carbon cycling. In Indonesia, peatlands store about 28.6 gigatonnes of carbon which is equivalent to 10 years of global fossil fuel emissions. Peatlands act as a water storage during wet seasons and slowly release water during dry seasons to maintain river discharges and hydrological balance. However, climate change induced prolonged drought has increased peatland dryness in recent decades which elevate the risks of unwanted peatland fires. During El Nino-induced drought in 2015, over 2.6 million hectares of forest and land burned, emitting 0.81–1.4 gigatonnes of greenhouse gasses. The extreme fires damaged biodiversity, degraded water quality and displaced thousands of locals. This study aimed to analyze peatland wetness as an indicator of fire occurrences in forest and land fires (FLFs) in Riau, Indonesia by examining the relationship between degree of peatland wetness derived from satellite imagery and hotspots data. Methods: Peatland wetness was estimated from microwave backscattering coefficients at several RadarSat synthetic aperture radar (SAR) wavelengths and cross validated with water table depth measurements from 120 monitoring wells. Hotspots data between 2015-2020 were obtained from NASA's MODIS active fire product. Findings: Preliminary results showed significant negative correlations between peatland wetness and numbers of hotspots in peatlands, with more hotspots occurring in drier peatlands compared to wetter ones. This implies that maintaining peatland hydrological functions through continuous saturation is pivotal to prevent severe peatland wildfires under future climate change. Conclusion: Conservation efforts to restore hydrological balance in degraded peatlands through re-wetting strategies are recommended. Further research utilizing machine learning algorithms to produce high-resolution peatland wetness maps can improve fire risk monitoring in peatlands. Novelty/Originality of this Study: This study introduces the novel concept of utilizing peatland wetness as a key indicator for predicting and mitigating forest and land fires in Indonesia, particularly in Riau Province. By combining peatland moisture and temperature data, the research establishes threshold values to better predict fire risks and guide timely mitigation efforts, thereby enhancing the efficiency and effectiveness of FLF response activities.
References
Aguilera, H., Moreno, L., Wesseling, J. G., Jiménez-Hernández, M. E., & Castaño, S. (2016). Soil moisture prediction to support management in semiarid wetlands during drying episodes. Catena, 147, 709-724. https://doi.org/10.1016/j.catena.2016.08.007
Agus, F., Mulyani, A., Dariah, A., Wahyunto, Maswar, & Susanti, E. (2012). Peat maturity and thickness for carbon stock estimation. 14th International Peat Congress, 3–8. https://doi.org/10.1007/BF00824349
Amraoui, M., DaCamara, C. C., & Pereira, J. M. C. (2010). Detection and monitoring of African vegetation fires using MSG-SEVIRI imagery. Remote Sensing of Environment, 114(5), 1038–1052. https://doi.org/10.1016/j.rse.2009.12.019
Arino, O., Casadio, S., & Serpe, D. (2012). Global night-time fire season timing and fire count trends using the ATSR instrument series. Remote Sensing of Environment, 116, 226–238. https://doi.org/10.1016/j.rse.2011.05.025
Austin, K. G., Schwantes, A., Gu, Y., & Kasibhatla, P. S. (2019). What causes deforestation in Indonesia? Environmental Research Letters, 14(2). https://doi.org/10.1088/1748-9326/aaf6db
Bajocco, S., Koutsias, N., & Ricotta, C. (2017). Linking fire ignitions hotspots and fuel phenology: The importance of being seasonal. Ecological Indicators, 82(May), 433–440. https://doi.org/10.1016/j.ecolind.2017.07.027
Benali, A., Russo, A., Sá, A. C. L., Pinto, R. M. S., Price, O., Koutsias, N., & Pereira, J. M. C. (2016). Determining fire dates and locating ignition points with satellite data. Remote Sensing, 8(4). https://doi.org/10.3390/rs8040326
BNPB (National Disaster Management Agency/Badan Nasional Penanggulangan Bencana). (2020). Indonesian disaster information data (DIBI). http://bnpb.cloud/dibi/tabel1a.
Bonn, A., Allott, T., Evans, M., Joosten, H., & Stoneman, R. (2016). Peatland Restoration and Ecosystem Services: Science, Policy and Practice. Cambridge University Press.
Boschetti, L., Stehman, S. V., & Roy, D. P. (2016). A stratified random sampling design in space and time for regional to global scale burned area product validation. Remote Sensing of Environment, 186, 465-478. https://doi.org/10.1016/j.rse.2016.09.016
BRGM. (2020). Strategic Plan Peatland Restoration Agency 2016-2020. Peatland and Mangrove Restoration Agency.
Carter, W. N. (2008). Disaster management: A disaster manager’s handbook. Asian Development Bank.
CIFOR. (2020). Global Wetlands v3. https://www2.cifor.org/global-wetlands/.
Cochrane, M. (2015). Above- and Belowground Tropical Rainforest Fire Dynamics. Geographic Information Science Center of Excellence (GIScCE) South Dakota State University.
Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T. A., Page, S. E., Bocko, Y. E., & Ifo, S. A. (2017). Age, extent and carbon storage of the central Congo Basin peatland complex. Nature, 542(7639), 86–90. https://doi.org/10.1038/nature21048
Dariah, A., Susanti, Mulyani, A., & Agus, F. (2012). Faktor penduga simpanan karbon pada tanah gambut. Prosiding Seminar Nasional Pengelolaan Lahan Gambut Berkelanjutan, 213–222.
Evans, C. D., Williamson, J. M., Kacaribu, F., Irawan, D., Suardiwerianto, Y., Hidayat, M. F., Laurén, A., & Page, S. E. (2019). Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia. Geoderma, 338(August 2018), 410–421. https://doi.org/10.1016/j.geoderma.2018.12.028
Fahmi, A., Radjagukguk, B., & Purwanto, B. H. (2015). Interaction of peat soil and sulphidic material substratum: Role of peat layer and groundwater level fluctuations on phosphorus concentration. Journal of Tropical Soils, 19(3), 171–179. https://doi.org/10.5400/jts.2014.v19i3.171-179
Field, R. D., Van Der Werf, G. R., Fanin, T., Fetzer, E. J., Fuller, R., Jethva, H., Levy, R., Livesey, N. J., Luo, M., Torres, O., & Worden, H. M. (2016). Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proceedings of the National Academy of Sciences of the United States of America, 113(33), 9204–9209. https://doi.org/10.1073/pnas.1524888113
Fujii, Y., Iriana, W., Oda, M., Puriwigati, A., Tohno, S., Lestari, P., ... & Huboyo, H. S. (2014). Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatera, Indonesia. Atmospheric Environment, 87, 164-169. https://doi.org/10.1016/j.atmosenv.2014.01.037
Fusco, E. J., Finn, J. T., Abatzoglou, J. T., Balch, J. K., Dadashi, S., & Bradley, B. A. (2019). Detection rates and biases of fire observations from MODIS and agency reports in the conterminous United States. Remote Sensing of Environment, 220(September 2018), 30–40. https://doi.org/10.1016/j.rse.2018.10.028
Glauber, A. J., & Gunawan, I. (2015). The cost of fire: An economic analysis of Indonesia’s 2015 fire crisis. The World Bank.
Goldstein, J. E., Graham, L., Ansori, S., Vetrita, Y., Thomas, A., Applegate, G., Vayda, A. P., Saharjo, B. H., & Cochrane, M. A. (2020). Beyond slash-and-burn: The roles of human activities, altered hydrology, and fuels in peat fires in Central Kalimantan, Indonesia. Singapore Journal of Tropical Geography, 41(2), 1–19. https://doi.org/10.1111/sjtg.12319
Goto, E. A., & Picanço, J. de L. (2021). The role of risk perception outreach courses in the context of disaster risk management: The example of São Paulo city, Brazil. International Journal of Disaster Risk Reduction, 60(May), 102307. https://doi.org/10.1016/j.ijdrr.2021.102307
Hantson, S., Padilla, M., Corti, D., & Chuvieco, E. (2013). Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sensing of Environment, 131, 152-159. https://doi.org/10.1016/j.rse.2012.12.004
Hantson, S., Pueyo, S., & Chuvieco, E. (2015). Global fire size distribution is driven by human impact and climate. Global Ecology and Biogeography, 24(1), 77-86. https://doi.org/10.1111/geb.12246
Harrison, M. E., Page, S. E., & Limin, S. H. (2009). The global impact of Indonesian forest fires. Biologist, 56(3), 156–163.
Huang, X., & Rein, G. (2017). Downward spread of smouldering peat fire: The role of moisture, density, and oxygen supply. International Journal of Wildland Fire, 26(11), 907–918. https://doi.org/10.1071/WF17031
Huijnen, V., Wooster, M. J., Kaiser, J. W., Gaveau, D. L. A., Flemming, J., Parrington, M., Inness, A., Murdiyarso, D., Main, B., & Van Weele, M. (2016). Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Scientific Reports, 6(February), 1–8. https://doi.org/10.1038/srep26886
Irfan, A., Febria, D., Nofianti, L., & Rijulvita, S. (2020). The conceptual framework for water accounting in sustainability of peatland ecosystems: An Islamic perspective. Journal of Environmental Management and Tourism, 11(3), 589–593. https://doi.org/10.14505/jemt.v11.3(43).11
Jefferson, U., Carmenta, R., Daeli, W., & Phelps, J. (2020). Characterising policy responses to complex socio-ecological problems: 60 fire management interventions in Indonesian peatlands. Global Environmental Change, 60(March 2019). https://doi.org/10.1016/j.gloenvcha.2019.102027
Krawchuk, M. A., Moritz, M. A., Parisien, M. A., Van Dorn, J., & Hayhoe, K. (2009). Global pyrogeography: The current and future distribution of wildfire. PLoS ONE, 4(4). https://doi.org/10.1371/journal.pone.0005102
Kumari, B., & Pandey, A. C. (2020). MODIS based forest fire hotspot analysis and its relationship with climatic variables. Spatial Information Research, 28(1), 87-99. https://doi.org/10.1007/s41324-019-00275-z
Kusumastuti, R. D., Arviansyah, A., Nurmala, N., & Wibowo, S. S. (2021). Knowledge management and natural disaster preparedness: A systematic literature review and a case study of East Lombok, Indonesia. International Journal of Disaster Risk Reduction, 58(December 2020), 102223. https://doi.org/10.1016/j.ijdrr.2021.102223
Lan, Y., Tham, J., Jia, S., Sarkar, S., Fan, W. H., Reid, J. S., Ong, C. N., & Yu, L. E. (2021). Peat-forest burning smoke in Maritime Continent: Impacts on receptor PM2.5 and implications at emission sources. Environmental Pollution, 275, 116626. https://doi.org/10.1016/j.envpol.2021.116626
Lin, S., Cheung, Y. K., Xiao, Y., & Huang, X. (2020). Can rain suppress smoldering peat fire? Science of the Total Environment.
Loepfe, L., Lloret, F., & Román-Cuesta, R. M. (2012). Comparison of burnt area estimates derived from satellite products and national statistics in Europe. International Journal of Remote Sensing, 33(12), 3653-3671. https://doi.org/10.1080/01431161.2011.631950
Masganti, Wahyunto, Dariah, A., Nurhayati, & Yusuf, R. (2014). Characteristics and potential utilization of degraded peatlands in Riau Province. Jurnal Sumberdaya Lahan, 8(1), 59–66.
Miettinen, J., & Liew, S. C. (2010). Status of peatland degradation and development in Sumatra and Kalimantan. Ambio, 39(5), 394–401. https://doi.org/10.1007/s13280-010-0051-2
Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S. C., & Page, S. E. (2017). From carbon sink to carbon source: Extensive peat oxidation in insular Southeast Asia since 1990. Environmental Research Letters, 12(2). https://doi.org/10.1088/1748-9326/aa5b6f
Ministry of Environment and Forestry. (2020). Sipongi forest fire monitoring system. http://sipongi.menlhk.go.id/home/main.
Monte, B. E. O., Goldenfum, J. A., Michel, G. P., & Cavalcanti, J. R. de A. (2021). Terminology of natural hazards and disasters: A review and the case of Brazil. International Journal of Disaster Risk Reduction, 52(October 2020). https://doi.org/10.1016/j.ijdrr.2020.101970
Nielsen, T. T., Mbow, C., & Kane, R. (2002). A statistical methodology for burned area estimation using multitemporal AVHRR data. International Journal of Remote Sensing, 23(6), 1181–1196. https://doi.org/10.1080/01431160110078449
Ogra, A., Donovan, A., Adamson, G., Viswanathan, K. R., & Budimir, M. (2021). Exploring the gap between policy and action in disaster risk reduction: A case study from India. International Journal of Disaster Risk Reduction, 63(November 2020), 102428. https://doi.org/10.1016/j.ijdrr.2021.102428
Page, S. E., Rieley, J. O., & Banks, C. J. (2011). Global and regional importance of the tropical peatland carbon pool. Global Change Biology, 17(2), 798–818. https://doi.org/10.1111/j.1365-2486.2010.02279.x
Palmer, C. E. (2001). The extent and causes of illegal logging: An analysis of a major cause of tropical deforestation in Indonesia. CSERGE Working Paper, January 2001, 33. http://www.cserge.ucl.ac.uk/Illegal_Logging.pdf
Purnomo, H., Shantiko, B., Sitorus, S., Gunawan, H., Achdiawan, R., Kartodihardjo, H., & Dewayani, A. A. (2017). Fire economy and actor network of forest and land fires in Indonesia. Forest Policy and Economics, 78, 21–31. https://doi.org/10.1016/j.forpol.2017.01.001
Rana, I. A., Asim, M., Aslam, A. B., & Jamshed, A. (2021). Disaster management cycle and its application for flood risk reduction in urban areas of Pakistan. Urban Climate, 38(June), 100893. https://doi.org/10.1016/j.uclim.2021.100893
Rein, G. (2016). The S.F.P.E. handbook of fire protection engineering. In Fire Safety Journal. Springer. https://doi.org/10.1007/978-1-4939-2565-0_19
Restuccia, F., Huang, X., & Rein, G. (2017). Self-ignition of natural fuels: Can wildfires of carbon-rich soil start by self-heating? Fire Safety Journal, 91(February), 828-834. https://doi.org/10.1016/j.firesaf.2017.03.052
Tacconi, L., Rodrigues, R. J., & Maryudi, A. (2019). Law enforcement and deforestation: Lessons for Indonesia from Brazil. Forest Policy and Economics, 108(June), 101943. https://doi.org/10.1016/j.forpol.2019.05.029
Tham, J., Sarkar, S., Jia, S., Reid, J. S., Mishra, S., Sudiana, I. M., Swarup, S., Ong, C. N., & Yu, L. E. (2019). Impacts of peat-forest smoke on urban PM2.5 in the Maritime Continent during 2012–2015: Carbonaceous profiles and indicators. Environmental Pollution, 248, 496–505. https://doi.org/10.1016/j.envpol.2019.02.049
Uda, S. K., Schouten, G., & Hein, L. (2020). The institutional fit of peatland governance in Indonesia. Land Use Policy, 99(September 2017), 103300. https://doi.org/10.1016/j.landusepol.2018.03.031
Usman, M., Sitanggang, I. S., & Syaufina, L. (2015). Hotspot distribution analyses based on peat characteristics using density-based spatial clustering. Procedia Environmental Sciences, 24, 132–140. https://doi.org/10.1016/j.proenv.2015.03.018
Wiggins, E. B., Czimczik, C. I., Santos, G. M., Chen, Y., Xu, X., Holden, S. R., Randerson, J. T., Harvey, C. F., Kai, F. M., & Yu, L. E. (2018). Smoke radiocarbon measurements from Indonesian fires provide evidence for burning of millennia-aged peat. Proceedings of the National Academy of Sciences of the United States of America, 115(49), 12419–12424. https://doi.org/10.1073/pnas.1806003115
Wilkinson, S. L., Moore, P. A., Flannigan, M. D., Wotton, B. M., & Waddington, J. M. (2018). Did enhanced afforestation cause high severity peat burn in the Fort McMurray Horse River wildfire? Environmental Research Letters, 13(1). https://doi.org/10.1088/1748-9326/aaa136
World Bank. (1996). The world bank participation sourcebook. The World Bank. Worton, B. J. (1989). Kernel Methods for Estimating the Utilization Distribution in Home-Range Studies Ecology, 70(1), 164–168. https://doi.org/10.2307/1938423
Worton, B. J. (1989). Kernel Methods for Estimating the Utilization Distribution in Home-Range Studies Ecology, 70(1), 164-168. https://doi.org/10.2307/1938423
Wösten, J. H. M., Clymans, E., Page, S. E., Rieley, J. O., & Limin, S. H. (2008). Peat-water interrelationships in a tropical peatland ecosystem in Southeast Asia. Catena, 73(2), 212-224. https://doi.org/10.1016/j.catena.2007.07.010
Yananto, A., Sartohadi, J., Marhaento, H., & Awaluddin. (2022). Groundwater level estimation model on SAR Sentinel-1 data in part of Riau, Indonesia. International Journal of Remote Sensing and Earth Sciences (IJReSES), 18(2), 203–216.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2024 M Bayu Rizky Prayoga, Mahawan Karuniasa, Evi Frimawaty
This work is licensed under a Creative Commons Attribution 4.0 International License.