In silico development and evaluation of pyruvic acid derivatives as potential analgesic and anti-inflammatory agents

Authors

  • A. Hafidz Kurniawan Pharmacy Study Program, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia

DOI:

https://doi.org/10.61511/jek.v3i1.2025.1974

Keywords:

analgesic, anti-inflammatory, development, in silico, pyruvic acid

Abstract

Background: Drug development is a process aimed at creating new drugs with enhanced biological activity through various approaches. One such approach is the rational design of new compound candidates using computer-based or in silico modeling technologies, such as molecular docking. Pyruvic acid is known to possess various pharmacological activities, including antioxidant and anti-inflammatory effects. Derivatives of pyruvic acid have the potential to be developed as candidate analgesic and anti-inflammatory drugs. This study explores the in silico development and evaluation of pyruvic acid derivatives as potential analgesic and anti-inflammatory drug candidates. Methods: Drug-likeness was evaluated using Lipinski's Rule of Five via pkCSM, while pharmacokinetic and toxicity profiles were predicted using the same platform. Molecular docking was performed on the cyclooxygenase-2 (COX-2) enzyme (PDB ID: 5IKR) using Molegro Virtual Docker 6.0. Findings: All test compounds met drug-likeness criteria. Compounds H6, H8, H9, H11, H17, and H18 exhibited superior binding affinities compared to paracetamol. Several compounds, including H8 and H10, demonstrated lower predicted toxicity compared to paracetamol. All test compound exhibits favorable pharmacokinetics properties based on the pkCSM preditive model. Conclusion: From this results, compound H6 and H8 emerged as the most promising candidate, exhibiting optimal characteristics across all evaluated parameters. These findings support further development of H6 and H8 as potential analgesic and anti-inflammatory agent targeting COX-2 Inhibition. Novelty/Originality of this article: This study developed and evaluated pyruvic acid derivative compounds as novel analgesic and anti-inflammatory agents based on in silico studies.

References

Asiri, Y. (2023). The Role of Pharmacokinetics in Pharmaceutical Toxicology. Journal of Pharmaceutical Toxicology, 6(2), 54-56. https://doi.org/10.37532/jpt.2023.6(2).54-56

Augustijns, P., Wuyts, B., Hens, B., Annaert, P., Butler, & Brouwers, J. (2014). A Review of Drug Solubility in Human Intestinal Fluids: Implications for The Prediction of Oral Absorption. European Journal of Pharmaceutical Sciences, 57, 322-332. https://doi.org/10.1016/j.ejps.2013.08.027

Azman, M., Sabri, A. H., Anjani, Q. K., Mustaffa, M. F., & Hamid, K. A. (2022). Intestinal Absorption Study: Challenges and Absorption Enhancement Strategies in Improving Oral Drug Delivery. Pharmaceuticals, 15(8), 975. https://doi.org/10.3390/ph15080975

Badan Pengawas Obat dan Makanan. (2022). Peraturan Badan Pengawas Obat dan Makanan Nomor 10 Tahun 2022 tentang Pedoman Uji Toksisitas Praklinik Secara In Vivo. Badan Pengawas Obat dan Makanan.

Barrett, J. S., Nicholas, T., Azer, K., & Corrigan, B. W. (2022). Role of Disease Progression Models in Drug Development. Pharmaceutical Research, 1803-1815. https://doi.org/10.1007/s11095-022-03257-3

Chackalamannil, S., Rotella, D., & Ward, S. (2017). Comprehensive Medicinal Chemistry III. Elsevier.

Currie, G. M. (2018). Pharmacology, Part 2: Introduction to Pharmacokinetics. Journal of Nuclear Medicine Technology, 46(3), 221-230. https://doi.org/10.2967/jnmt.117.199638

Dahlgren, D., & Lennernäs, H. (2019). Intestinal Permeability and Drug Absorption: Predictive Experimental, Computational and In Vivo Approaches. Pharmaceutics, 11(8), 411. https://doi.org/10.3390/pharmaceutics11080411

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-likeness and Medicinal Chemistry Friendliness of Small Molecules. Scientific Reports, 1-13. https://doi.org/10.1038/srep42717

Derendorf, H., & Schmidt, S. (2020). Rowland and Tozer’s Clinical Pharmacokinetics and Pharmacodynamics: Concept and Applications Fifth Edition. Wolters Kluwer

Doytchinova, I. (2022). Drug Design-Past, Present, Future. Molecules, 1-9. https://doi.org/10.3390/molecules27051496

Faleye, O. S., Boya, B. R., Lee, J. H., Choi, I., & Lee, J. (2024). Halogenated Antimicrobial Agents to Combat Drug-Resistant Pathogens. Pharmacological Reviews, 76(1), 90-141. https://doi.org/10.1124/pharmrev.123.000863

Gray, L. R., Tompkins, S. C., & Taylor, E. B. (2014). Regulation of Pyruvate Metabolism and Human Disease. Celular and Molecular Life Sciences, 2577-2604. https://doi.org/10.1007/s00018-013-1539-2

Guengerich, F. P. (2003). Cytochromes P450, Drugs, and Diseases. Molecular Interventions, 3(4), 194-204. https://doi.org/10.1124/mi.3.4.194

Koprivica, I., Djedovic, N., Stojanovic, I., & Miljkovic, D. (2022). Ethyl Pyruvate, A Versatile Protector in Inflammation and Autoimmunity. Inflammation Research, 169-182. https://doi.org/10.1007/s00011-021-01529-z

Lee, H.-K., Kim, I.-D., Kim, S.-W., Lee, H., Park, J.-Y., Yoon, S.-H., & Lee, J.-K. (2017). Anti-inflammatory and Anti Excitoxic Effects of Diethyl Oxopropanamide, An Ethyl Pyruvate Bioisoster, Exert Robust Neuroprotective Effects in The Postischemic Brain. Scientific Reports, 1-14. https://doi.org/10.1038/srep42891

Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Advanced Drug Delivery Reviews, 3-26. https://doi.org/10.1016/s0169-409x(00)00129-0

Lu, C., Wang, C., Xiao, H., Chen, M., Yang, Z., Liang, Z., Wang, Q. (2021). Ethyl Pyruvate: A Newly Discovered Compound Against Ischemia-Reperfusion Injury in Multiple Organs. Pharmacological Research, 1-11. https://doi.org/10.1016/j.phrs.2021.105757

Meyer, U. A. (1996). Overview of Enzymes of Drug Metabolism. Journal of Pharmacokinetics and Biopharmaceutics, 24(5), 449-459. https://doi.org/10.1007/BF02353473

Mobitz, H. (2023). Design Principles for Balancing Lipophilicity and Permeability in Beyond Rule of 5 Space. ChemMedChem, 19, Article e202300395. https://doi.org/10.1002/cmdc.202300395

Nair, A. S., Singh, A. K., Kumar, A., Kumar, S., & Sukumaran, S. (2022). FDA-Approved Trifluoromethyl Group-Containing Drugs: A Review of 20 Years. Processes, 1- 25. https://doi.org/10.3390/pr10102054

Palleria, C., Di Paolo, A., Giofrè, C., Caglioti, C., Leuzzi, G., Siniscalchi, A., De Sarro, G., & Gallelli, L. (2013). Pharmacokinetics Drug-drug Interaction and Their Implication in Clinical Management. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 18(7), 601-610. https://pubmed.ncbi.nlm.nih.gov/24516494/

Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting Small-Molecule Pharmacokinetic Properties Using Graph-based Signatures. Journal of Medicinal Chemistry, 4066-4072. https://doi.org/10.1021/acs.jmedchem.5b00104

Singh, S. P., Deb, C. R., Ahmed, S. U., Saratchandra, Y., & Konwar, B. K. (2016). Molecular Docking Simulation Analysis of The Interaction of Dietary Flavonols with Heat Shock Protein 90. The Journal of Biomedical Research, 30(1), 67-74. https://doi.org/10.7555/JBR.30.20130158

Siswandono, S. (2016). Kimia Medisinal 1 Edisi 2. Airlangga University Press.

Siswandono, S. (2016). Kimia Medisinal 2 Edisi 2. Airlangga University Press.

Stanzione, F., Giangreco, I., & Cole, J. C. (2021). Use of Molecular Docking Computational Tools in Drug Discovery. Progress in Medicinal Chemistry, 273- 343. https://doi.org/10.1016/bs.pmch.2021.01.004

Taylor, J. B., & Triggie, D. J. (2006). Comprehensive Medicinal Chemistry II. Elsevier Science.

Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular Properties that Influence The Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry, 45(12), 2615-2623. https://doi.org/10.1021/jm020017n

Widiandani, T., Siswandono, Hardjono, S., Sondakh, R., Istifada, & Zahra, R. (2013). Docking dan Modifikasi Struktur Senyawa Baru Turunan Parasetamol. Berkala Ilmiah Kimia Farmasi, 41-45. https://journal.unair.ac.id/BIKF@docking-dan-modifikasi-struktur-senyawa-baru-turunan-parasetamol--article-6445-media-96-category-15.html

Wu, D., Chen, Q., Chen, X., Han, F., Chen, Z., & Wang, Y. (2023). The Blood-Brain Barrier: Structure, Regulation and Drug Delivery. Signal Transduction and Targeted Therapy, 8(1), Article 217. https://doi.org/10.1038/s41392-023-01481-w

Yang, R., Zhu, S., & Tonnessen, T. I. (2016). Ethyl Pyruvate is A Novel Anti-inflammatory Agent to Treat Multiple Inflammatory Organ Injuries. Journal of Inflammation, 1- 11. https://doi.org/10.1186/s12950-016-0144-1

Zhou, F.-Q. (2022). Pyruvate as A Potential Beneficial Anion in Resuscitation Fluids. Frontiers in Medicine, 1-11. https://doi.org/10.3389/fmed.2022.905978

Downloads

Published

2025-07-31

How to Cite

Kurniawan, A. H. (2025). In silico development and evaluation of pyruvic acid derivatives as potential analgesic and anti-inflammatory agents. Journal of Earth Kingdom, 3(1), 1–17. https://doi.org/10.61511/jek.v3i1.2025.1974

Issue

Section

Articles

Citation Check