From concrete jungles to urban gardens: AI-powered solutions for sustainable food production in cities
DOI:
https://doi.org/10.61511/jbiogritech.v2i1.2025.2545Keywords:
agriculture, artificial intelligence, deep learning, environmental optimization, food security, platform design, sustainable urban, urban farmingAbstract
Introduction: Urban agriculture in Indonesia faces critical challenges including agricultural land conversion, aging farmer workforce (39% over 55 years, only 21% millennials), and rural urban inequality. While deep learning technologies prove effective for agricultural optimization, Indonesia lags neighboring countries due to regulatory ambiguity, limited incentives, and low youth participation. This study develops Urfalogy, an artificial intelligence powered platform addressing three primary urban farming constraints: limited space, insufficient capital, and inadequate technology. Methods: This research employed Agile software development methodology integrated with deep learning. The You Only Look Once version 8 (YOLOv8) algorithm was utilized for environmental object detection and segmentation. Dataset preprocessing included multiple augmentation techniques: scaling, geometric transformation, brightness adjustment, contrast and color saturation modifications. The platform integrates nine features: artificial intelligence layout designer, plant variety recommender, plant health detection, soil monitoring with internet of things sensors, e-commerce, real time expert consultation, appointment scheduling, interactive tutorials, and analytics dashboard. Finding: Model training achieved optimal performance metrics at epoch 100: segment loss of 0.56756, recall of 90.01%, and mean Average Precision at intersection over union 0.50 (mAP50) of 90.715%. During inference, the model successfully identified environmental components (ceiling, wall, floor), enabling precise spatial mapping for garden layout design. The integrated platform demonstrates comprehensive end to end capability supporting complete urban farming workflow from planning through sales. Conclusion: Urfalogy represents a transformative solution effectively bridging Indonesia's urban agriculture gap through artificial intelligence, Internet of Things integration, and human centered design, significantly advancing sustainability, food security, and economic opportunities. Novelty/Originality of this article: This research uniquely combines deep learning-based spatial optimization with comprehensive platform ecosystem design, integrating YOLOv8 environmental analysis with real-time consultation and e-commerce, addressing specific technological, economic, and accessibility barriers in Indonesian urban agriculture.
References
Afandi, K., Arief, M. H. (2023). Proses, tantangan, dan faktor keberhasilan transformasi Agile: Kajian literatur sistematis. Journal of Digital Business Innovation, 1(1), 21–36. https://repository.ikado.ac.id/id/eprint/121/
Agustian, I., Faurina, R., Ishak, S. I., Utama, F. P., Dinata, K., & Daratha, N. (2023). Deep learning pest detection on Indonesian red chili pepper plant based on fine-tuned YOLOv5.1 International Journal of Advances in Intelligent Informatics, 9(3). https://doi.org/10.26555/ijain.v9i3.864
Amri, K. (2024). Potensi keberlanjutan urban farming sebagai upaya peningkatan ketahanan pangan di Kota Pekanbaru. IPTEKIN Jurnal Kebijakan Pembangunan dan Inovasi, 7(1), 26–36. https://jurnal.riau.go.id/iptekin/article/view/93
Arham, I., Sjaf, S., & Darusman, D. (2019). Strategi pembangunan pertanian berkelanjutan di pedesaan berbasis citra drone (Studi kasus Desa Sukadamai Kabupaten Bogor). Jurnal Ilmu Lingkungan, 17(2), 245-255. https://doi.org/10.14710/jil.17.2.245-255
Arista, N. I. D., Himawan, R., & Pratama, R. A. J. (2025). A web-based educational information system for urban agriculture management as a solution to urban land conversion. Social Agriculture, Food System, and Environmental Sustainability, 2(1), 17-32. https://doi.org/10.61511/safses.v2i1.2025.1371
Budde, L., Dreger, J., Egger, D., & Seel, T. (2024). Core-shell capsule image segmentation through deep learning with synthetic training data. Current Directions in Biomedical Engineering, 10(4), 123–126. https://doi.org/10.1515/cdbme-2024-2030
Budi, D. S., Siswa, T. A. Y., & Abijono, H. (2016). Analisis pemilihan penerapan proyek metodologi pengembangan rekayasa perangkat lunak. Teknika, 5(1), 24–31. https://doi.org/10.34148/teknika.v5i1.48
Fauzia, A., & Koestoer, R. H. (2024). Sustainable urban farming management: A comparison study in Thailand and Indonesia. Sustainable Urban Development and Environmental Impact Journal, 1(2), 43–52. https://doi.org/10.61511/sudeij.v1i2.2024.1026
FHA Food & Beverage. (2023). Urban farming in Southeast Asia. FHA Food & Beverage.
Hakam. (2020). PSE UGM turut terlibat penelitian NSF smart urban farming di Kota Makassar. Universitas Gadjah Mada.
Kianta, G. (2021). 3 alasan mengapa urban farming tertinggal di Indonesia. Project Planet.
Kurnadipare, A. I., Amaliya, S., Notodiputro, K. A., Angraini, Y., & Mualifah, L. N. A. (2025). Comparing forecasts of agricultural sector export values using SARIMA and long short-term memory models. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 19(1), 385–396. https://doi.org/10.30598/barekengvol19iss1pp385-396
Low, B. (2025). Restoring Singapore's Food Collective Actualisation Through Regenerative Agrarian Dynamics. RMIT University.
Luftensteiner, V. M. (2023). Urban-Farming Practices in ASEAN: Driving and Influential Forces in Singapore, Thailand and Indonesia. BA.
Neamah, S. B., & Karim, A. A. (2023). Real-time traffic monitoring system based on deep learning and YOLOv8. ARO-The Scientific Journal of Koya University, 11(2), 137–150. https://doi.org/10.14500/aro.11327
Noor, R. M., & Suwandana, E. (2024). Ancaman krisis petani di Indonesia berdasarkan hasil Sensus Pertanian 2023. Jurnal Litbang Sukowati: Media Penelitian dan Pengembangan, 8(2), 226–234. http://journal.sragenkab.go.id/index.php/sukowati
Parsudi, S. (2019). Model, motivasi dan kendala masyarakat dalam melakukan pertanian kota (urban farming) di Kota Surabaya. Berkala Ilmiah AGRIDEVINA, 8(1). https://doi.org/10.33005/adv.v8i1.1612
Pemerintah Kota Makassar. (2022). NSF dukung Makassar kembangkan sistem AI Urban farming di Lorong Wisata. Pemerintah Kota Makassar.
Pradana, A. C., Soedwiwahjono, S., & Nurhadi, K. (2021). Fenomena perubahan penggunaan lahan pertanian menjadi perumahan: Studi kasus kawasan peri-urban Kecamatan Colomadu. Desa-Kota, 3(1), 24-35. https://doi.org/10.20961/desa-kota.v3i1.37622.24-35
Saputra, A., Abdoellah, O. S., Utama, G. L., Suparman, Y., Mulyanto, D., & Wulandari, I. (2025). Exploring the role of urban agriculture in Indonesia’s socio-economic and environmental landscape: A systematic literature review. Jurnal Ilmu Lingkungan, 23(1), 175–188. https://doi.org/10.14710/jil.23.1.175-188
Sari, B., Effendi, J., Wanialisa, M., Alam, I. K. (2024). Pengembangan urban farming sebagai ketahanan pangan di lingkungan RW 023 Kelurahan Teluk Pucung Bekasi Utara. Media Abdimas, 3(2), 97–108. https://doi.org/10.37817/mediaabdimas.v3i2.3738
Siswoyo, R. B., Anisa, R. M., Dewantara, S. A., Febriansyah, R. R., & Nurmalasari, R. R. (2024). Greengrow: Smart greenhouse untuk optimalisasi budidaya microgreen menggunakan deep learning. Prosiding Seminar Nasional Teknik Elektro UIN Sunan Gunung Djati Bandung, 9, 109–119. https://library.poltekkes-surabaya.ac.id/public/TEKMED/
Suhas, S., Ranjitha, U. N., Bhuvan, C. U., Mahantesh, K. B., & Kalyan, D. S. (2024). Leveraging ensemble deep learning for enhanced brain tumor analysis: Integrating YOLOv8, Mask R-CNN, and U-Net.4 2024 8th International Conference on Computational System and Information Technology for Sustainable Solutions (CSITSS), 1–6. https://doi.org/10.1109/CSITSS64042.2024.10816879
Tanjung, D., Kriswantriyono, A., Wulandari, Y. P., Suharjito, D., & Purnamadewi, Y. L. (2023). Pengembangan pertanian dalam mengurangi ketimpangan desa-kota menuju penguatan ekonomi Jawa Barat. Jurnal Resolusi Konflik, CSR Dan Pemberdayaan (CARE), 8(1), 62–76. https://journal.ipb.ac.id/index.php/jurnalcare/article/view/48559
Thakral, G., Kumar, U., & Gambhir, S. (2024). Implementation of deep learning-based segmentation technique on LDCT scan images for detection of lung cancer in early stages. 2024 International Conference on Computing, Sciences and Communications (ICCSC), 1–6. https://doi.org/10.1109/ICCSC62048.2024.10830427
Ventura, M. A. D. A., & Silva e Meirelles, D. (2025). Business model structuration in Industry 4.0: An analysis of the value-based strategies of smart service providers in Brazil. Journal of Manufacturing Technology Management, 36(1), 134-158. https://doi.org/10.1108/JMTM-12-2023-0548
Yurembam, G. S., Pramanik, M., Yengkokpam, R. D., Hemochandra, L., Chakma, B., Jhajharia, D., & Patle, G. T. (2025). Integration of digital innovation in urban farming: A review towards advancing sustainable food security in South and Southeast Asian cities. Journal of Agricultural Engineering, 62(2), 494–505. https://doi.org/10.52151/jae2025622.1937
Zhou, H., Chen, X., Li, J., Zhang, Z., Fu, Y., Liva, M. P., Greenbaum, D., & Hui, P. (2025). Generative artificial intelligence in the metaverse era: A review on models and applications. Research, 8, 0804. https://doi.org/10.34133/research.0804
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Alexander Imanuel Widjanarko, Nathan Daud, Diva Kurnianingtyas

This work is licensed under a Creative Commons Attribution 4.0 International License.














