Konflik pengelolaan logam berat dalam sistem pertanian berkelanjutan: Pemanfaatan kitosan cangkang kerang sebagai flokulan berteknologi elektrokoagulasi, absorpsi, dan filtrasi
DOI:
https://doi.org/10.61511/environc.v1i2.2024.1263Keywords:
adsorption, electrocoagulation, filtration, sustainable agricultureAbstract
Background: Water plays a central role in sustaining human life and ecosystems on Earth. It is used in various aspects of daily life, including consumption, agriculture, and industry. However, current environmental issues indicate that we are experiencing severe disruptions in water ecosystems, especially concerning water pollution. To address this problem, the proposed solution is to implement the principles of electrocoagulation, adsorption, and filtration to recycle wastewater from the tofu industry and mitigate serious water pollution issues. Methods: This study is an experiment testing electrocoagulation, adsorption, and filtration devices, as well as the effectiveness of green mussel shell chitosan as an adsorbent. The study will be conducted in Boyolali for two months, using chili plants and Nile tilapia as samples. The samples will be given three treatments: wastewater, recycled water, and well water (control). The research procedure includes device fabrication, testing, and evaluation. Data will be analyzed through pH, temperature, DO, TAN, metal content in water, plant growth, and Nile tilapia survival rate tests. Findings: Electrocoagulation as the initial stage of wastewater treatment aims to precipitate solid particles through redox reactions, while the adsorption stage using chitosan from green mussels is designed to effectively filter toxic metal ions. Subsequently, advanced filtration is performed to enhance filtering efficiency. In addition to environmental benefits, this innovation also offers economic potential through the use of green mussels to produce chitosan. Chitosan, with its cationic properties, non-toxic biological profile, and chemical reactivity, makes it an ideal adsorption agent. The management of this solution involves four main stages: 1) Planning stage (Plan); 2) Implementation stage; 3) Control stage (Check); 4) Action stage; Implementation. Conclusion: The recycled wastewater from tofu production is expected to support sustainable agriculture, serving as a substitute for main water sources, especially during the dry season. Novelty/Originality of this article: This research explores a sustainable solution for water pollution using electrocoagulation, adsorption, and filtration with green mussel shell chitosan, leveraging the economic potential of green mussels, and applying recycled water to agriculture and aquaculture.
References
Afifa, U. I., Hidayanti, A., Ismuyanto, B., & Juliananda, J. (2021). Pengaruh Tegangan Elektrokoagulasi dan Konsentrasi Awal Pewarna terhadap Persentase Penyisihan Remazol Red RB. Jurnal Rekayasa Bahan Alam dan Energi Berkelanjutan, 5(2), 1-9. https://doi.org/10.21776/ub.rbaet.2021.005.02.01
Ainuddin, W. (2017). Studi Pencemaran Logam Berat Merkuri (Hg) Di Perairan Sungai Tabobo Kecamatan Malifut Kabupaten Halmahera Utara. Jurnal Ecosystem, 17(1), 653-659. https://journal.unibos.ac.id/eco/article/view/765
Arsyad, S., & Rustiadi, E. (Eds.). (2008). Penyelamatan tanah, air, dan lingkungan. Yayasan Pustaka Obor Indonesia.
Asmadi & Suharno. (2012). Dasar-dasar Teknologi Pengolahan Air Limbah. Gosyen Publishing.
Badan Pusat Statistik Kabupaten Boyolali. (2018). Jumlah Industri Kecil Menurut Jenisnya di Kabupaten Boyolali, 2017. https://boyolalikab.bps.go.id/id/statistics-table/1/MTkyIzE=/jumlah-industri-kecil-menurut-jenisnya-di-kabupaten-boyolali-2017.html
Bhattacharyya, K. G., & Gupta, S. S. (2008). Kaolinite and montmorillonite as adsorbents for Fe (III), Co (II) and Ni (II) in aqueous medium. Applied Clay Science, 41(1-2), 1-9. https://doi.org/10.1016/j.clay.2007.09.005
Darmono. (1995). Logam Dalam Sistem Biologi Makhluk Hidup. Universitas Indonesia Press.
Hanum, F., Tambun, R., Ritonga, M. Y., & Kasim, W. W. (2015). Aplikasi elektrokoagulasi dalam pengolahan limbah cair pabrik kelapa sawit. Jurnal Teknik Kimia USU, 4(4), 13-17. https://doi.org/10.32734/jtk.v4i4.1508
Hawab, H. M. (2004). Pengantar Biokimia Edisi Revisi. Bayumedia Publishing.
Palar, H. (1994). Pencemaran dan Toksikologi Logam Berat. Rineka Cipta.
Purwanti, A. A. (2018). Pengelolaan limbah padat bahan berbahaya dan beracun (B3) rumah sakit di RSUD dr. Soetomo surabaya. Jurnal Kesehatan Lingkungan, 10(3), 291-298. https://doi.org/10.20473/jkl.v10i3.2018.291-298
Komputer, P. J. (2011). Kota Kota Di Pulau Jawa. https://kotakotadipulaujawa.blogspot.com/
Said, N. I. (2017). Teknologi Pengolahan Air Limbah. Erlangga.
Sakti A Siregar. (2005). Instalasi Pengolahan Air Limbah. Penerbit Kanisius.
South, A. E., & Nazir, E. (2016). Karakteristik Air Limbah Rumah Tangga (grey water) Pada Salah Satu Perumahan Menengah keatas yang Berada di Tangerang Selatan. Ecolab, 10(2), 47-102. https://dx.doi.org/10.20886/jklh.2016.10.2.80-88
Sugiharto. (2005). Dasar-dasar Pengolahan Air Limbah. UI Press.
Suharto. (2010). Limbah Kimia dalam Pencemaran Air dan Udara. Andi.
Sumantri. (2013). Kesehatan Lingkungan. Kencana Prenada Media Group.
Sumarno. (2018). Pertanian Berkelanjutan: Persyaratan Pengembangan Pertanian Masa Depan, dalam Mewujudkan Pertanian Perkelanjutan: Agenda Inovasi Teknologi dan Kebijakan. IAARD Press.
Susanto. (2011). Penurunan Kadar Lemak Berat dan Kekeruhan Air Limbah Menggunakan Proses Elektrokoagulasi. Universitas Indonesia.
Tchobanoglous, G. dan Burton, F.L. (1991). Wastewater Engineering Treatment Disposal, resue. Series Water Resource and Environment Engineering 6th ed. McGraw Hill Book Co.
Wardani. (2009). Riset Sumber Daya Manusia. PT Gramedia Pustaka Utama.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2024 Environment Conflict

This work is licensed under a Creative Commons Attribution 4.0 International License.