Advanced electrochemical detection of arsenic using platinum-modified boron-doped diamond by anodic stripping voltammetry

Authors

  • Fadhlir R. A. A. Fatah Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
  • Rinaldo Sitorus Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
  • Asep Saefumillah Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
  • Hanif Mubarok Department of Chemistry, University of Ulsan, Ulsan 44610, Korea, Republic of
  • Respati K. Pramadewandaru Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia; Department of Material and Metallurgical Engineering, Faculty of Industrial Technology and System Engineering, Sepuluh Nopember Institute of Technology, Surabaya 60111, Indonesia

DOI:

https://doi.org/10.61511/eam.v2i1.2024.993

Keywords:

arsenic, anodic stripping voltammetry, modified BDD electrode, platinum

Abstract

Background: Platinum-modified boron-doped diamond (BDD) electrodes were effectively fabricated through a combination of wet seeding and electrodeposition techniques. Methods: This research involved the utilization of various chemicals and apparatus, the modification of boron-doped diamond (BDD) electrodes with platinum using wet seeding and electrodeposition, and the detection of As3+ and As5+ using a phosphate buffer solution and anodic stripping voltammetry (ASV). Findings: Characterization using Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) confirmed the successful deposition of 1.54% platinum on the BDD surface. These modified electrodes were employed as sensors for arsenic species (As³⁺ and As⁵⁺) using anodic stripping voltammetry (ASV) in a 0.1 M phosphate buffer solution at pH 6. Under optimal conditions, including a deposition potential of -500 mV, a deposition time of 150 s, and a scan rate of 200 mV/s, the linear detection of As³⁺ and As⁵⁺ was achieved within a concentration range of 0 to 100 ppb (R² = 0.9797 and 0.9903, respectively). Prior to ASV detection of As⁵⁺, a pretreatment step involving the addition of 0.1 M NaBH₄ was necessary to reduce As⁵⁺ to As³⁺. The detection limits for As³⁺ and As⁵⁺ were determined to be 16.50 ppb and 8.19 ppb, respectively. Conclusion: This research highlights the potential of BDD/Pt electrodes in environmental monitoring and arsenic detection applications and demonstrates the method's efficacy for the speciation analysis of arsenic species. Novelty/Originality of this Study: This research pioneers the use of platinum-modified boron-doped diamond electrodes for the speciation analysis of arsenic, offering a promising new approach for environmental monitoring applications.

References

Afkhami, A., Madrakian, T., & Assl, A. A. (2001). Kinetic-spectrophotometric determination of trace amounts of As (III) based on its inhibitory effect on the redox reaction between bromate and hydrochloric acid. Talanta, 55(1), 55-60. https://doi.org/10.1016/S0039-9140(01)00391-5

Agustiany, T., Khalil, M., Einaga, Y., Jiwanti, P. K., & Ivandini, T. A. (2020). Stable iridium-modified boron-doped diamond electrode for the application in electrochemical detection of arsenic (III). Materials Chemistry and Physics, 244. https://doi.org/10.1016/j.matchemphys.2020.122723

Alghamdi, A. H. (2010). Applications of stripping voltammetric techniques in food analysis. Arabian Journal of Chemistry, 3(1), 1–7. https://doi.org/10.1016/j.arabjc.2009.12.001

Anggraningrum Ivandini, T., Wijaya, L., Gunlazuardi, J., & Einaga, Y. (2012). Modification of Gold Nanoparticles at Carbon Electrodes and the Applications for Arsenic (III) Detections. Makara Journal of Science, 16(1), 9–14. https://doi.org/10.7454/mss.v16i1.1274/Makara

Assegid, K., Ahmed, F., Ahamed, S., & Hussam, A. (2011). Development of a gas phase chemiluminescence system for the measurement of arsenic in drinking water. Analytical Methods, 3(12), 2921–2928. https://doi.org/10.1039/c1ay05476g

Atriardi, S. R., Dewandaru, R. K. P., Gunlazuardi, J., & Ivandini, T. A. (2019). Modification of boron-doped diamond electrodes with platinum-iridium for carbon dioxide electroreduction. IOP Conference Series: Materials Science and Engineering, 496(1). https://doi.org/10.1088/1757-899X/496/1/012040

Babar, N. U. A., Joya, K. S., Tayyab, M. A., Ashiq, M. N., & Sohail, M. (2019). Highly Sensitive and Selective Detection of Arsenic Using Electrogenerated Nanotextured Gold Assemblage. ACS Omega, 4(9), 13645–13657. https://doi.org/10.1021/acsomega.9b00807

Baker, B. A., Cassano, V. A., Murray, C., & Dreger, M. (2018). Arsenic exposure, assessment, toxicity, diagnosis, and management: Guidance for occupational and environmental physicians. Journal of Occupational and Environmental Medicine, 60(12), E634–E639. https://doi.org/10.1097/JOM.0000000000001485

Baloch, M. Y. J., Talpur, S. A., Talpur, H. A., Iqbal, J., Mangi, S. H., & Memon, S. (2020). Effects of Arsenic Toxicity on the Environment and Its Remediation Techniques: A Review. Journal of Water and Environment Technology, 18(5), 275–289. https://doi.org/10.2965/JWET.19-130

Bhat, A., Hara, T. O., Tian, F., & Singh, B. (2022). Review of analytical techniques for arsenic detection and determination in drinking water. Environmental Science: Advances, 2(2), 171–195. Royal Society of Chemistry. https://doi.org/10.1039/d2va00218c

Bu, L., Liu, J., Xie, Q., & Yao, S. (2015). Anodic stripping voltammetric analysis of trace arsenic (III) enhanced by mild hydrogen-evolution at a bimetallic Au-Pt nanoparticle modified glassy carbon electrode. Electrochemistry Communications, 59, 28–31. https://doi.org/10.1016/j.elecom.2015.06.015

Cavicchioli, A., La-Scalea, M. A., & Gutz, I. G. R. (2004). Analysis and speciation of traces of arsenic in environmental, food and industrial samples by voltammetry: A review. Electroanalysis, 16(9), 697–711. https://doi.org/10.1002/elan.200302936

CDC. (2015). Support document to the 2015 priority list of hazardous substances that will be candidates for toxicological profiles. www.atsdr.cdc.gov/SPL.

Chen, J., Yoshinaga, M., Garbinski, L. D., & Rosen, B. P. (2016). Synergistic interaction of glyceraldehydes-3-phosphate dehydrogenase and ArsJ, a novel organoarsenical efflux permease, confers arsenate resistance. Molecular Microbiology, 100(6), 945–953. https://doi.org/10.1111/mmi.13371

Chen, L., Doeven, E. H., Wilson, D. J. D., Kerr, E., Hayne, D. J., Hogan, C. F., Yang, W., Pham, T. T., & Francis, P. S. (2017). Co-reactant Electrogenerated Chemiluminescence of Iridium (III) Complexes Containing an Acetylacetonate Ligand. ChemElectroChem, 4(7), 1797–1808. https://doi.org/10.1002/celc.201700222

Dai, X., & Compton, R. G. (2006). Detection of As(III) via oxidation to As(v) using platinum nanoparticle modified glassy carbon electrodes: Arsenic detection without interference from copper. Analyst, 131(4), 516–521. https://doi.org/10.1039/b513686e

Daud, N., Kamaruddin, N. K. N., Sulaiman, S., & Syono, M. I. (2016). Electrochemical Detection of Arsenic Using Modified Platinum-Cobalt Electrode. International Journal of Chemical Engineering and Applications, 7(4), 264–268. https://doi.org/10.18178/ijcea.2016.7.4.586

De Carvalho, L. M., Do Nascimento, P. C., Koschinsky, A., Bau, M., Stefanello, R. F., Spengler, C., Bohrer, D., & Jost, C. (2007). Simultaneous determination of cadmium, lead, copper, and thallium in highly saline samples by anodic stripping voltammetry (ASV) using mercury-film and bismuth-film electrodes. Electroanalysis, 19(16), 1719–1726. https://doi.org/10.1002/elan.200703922

Dewandaru, R. K. P., Gunlazuardi, J., & Ivandini, T. A. (2018). Preparation of iridium-modified boron-doped diamond (BDD) electrodes for electroreduction of CO2. AIP Conference Proceedings, 2023. https://doi.org/10.1063/1.5064095

Eprilia, N., Sanjaya, A. R., Pramadewandaru, R. K., Pertiwi, T. A. H., Putri, Y. M. T. A., Rahmawati, I., Dewi, B. E., Krisnandi, Y. K., Chung, H., & Ivandini, T. A. (2024). Preparation of nickel foam modified by multiwalled hollow spheres of NiCo2O4 as a promising non-enzymatic glucose sensor. RSC Advances, 14(15), 10768–10775. https://doi.org/10.1039/d3ra08663a

Gajdár, J., Barek, J., & Fischer, J. (2019). Electrochemical microcell based on silver solid amalgam electrode for voltammetric determination of pesticide difenzoquat. Sensors and Actuators, B: Chemical, 299. https://doi.org/10.1016/j.snb.2019.126931

Gao, F., Yang, N., & Nebel, C. E. (2013). Highly stable platinum nanoparticles on diamond. Electrochimica Acta, 112, 493–499. https://doi.org/10.1016/j.electacta.2013.09.005

Hrapovic, S., Liu, Y., & Luong, J. H. T. (2007). Reusable platinum nanoparticle modified boron doped diamond microelectrodes for oxidative determination of arsenite. Analytical Chemistry, 79(2), 500–507. https://doi.org/10.1021/ac061528a

Hung, D. Q., Nekrassova, O., & Compton, R. G. (2004). Analytical methods for inorganic arsenic in water: A review. Talanta, 64(2), 269–277.

https://doi.org/10.1016/j.talanta.2004.01.027

Ivandini, T. A., Sato, R., Makide, Y., Fujishima, A., & Einaga, Y. (2006). Electrochemical detection of arsenic (III) using indium-implanted boron-doped diamond electrodes. Analytical Chemistry, 78(18), 6291–6298. https://doi.org/10.1021/ac0519514

Khansili, N. (2023). Advances in material for colorimetric and fluorescent detection of arsenic. Biosensors and Bioelectronics: X, 15, 100410. https://doi.org/10.1016/j.biosx.2023.100410

Kim, H. C., Pramadewandaru, R. K., Kabiraz, M. K., Azizar, G. A. Bin, Wahidah, H., Kim, Y., Lee, S. U., Chae, H. J., Choi, S. Il, & Hong, J. W. (2024). Ultrathin Holey Pt-M Alloy Nanosheets via Sequential Kinetic-Thermodynamic Metal Reduction Control. ACS Catalysis, 14, 3756–3765. https://doi.org/10.1021/acscatal.3c05806

Krejci, J., Sajdlova, Z., Nedela, V., Flodrova, E., Sejnohova, R., Vranova, H., & Plicka, R. (2014). Effective Surface Area of Electrochemical Sensors. Journal of The Electrochemical Society, 161(6), B147–B150. https://doi.org/10.1149/2.091406jes

Lestarini, D. T., & Ivandini, T. A. (2019). Electrochemical detection of As3+ and As5+ by anodic stripping voltammetry at a gold electrode. IOP Conference Series: Materials Science and Engineering, 496(1). https://doi.org/10.1088/1757-899X/496/1/012030

Levine, C. R., Yanai, R. D., Lampman, G. G., Burns, D. A., Driscoll, C. T., Lawrence, G. B., Lynch, J. A., & Schoch, N. (2014). Evaluating the efficiency of environmental monitoring programs. Ecological Indicators, 39, 94–101. https://doi.org/10.1016/j.ecolind.2013.12.010

Liu, J., Dang, Q., Wang, L., Wang, D., & Tang, L. (2024). Applications of flexible electrochemical electrodes in wastewater treatment: A review. In Chinese Chemical Letters (Vol. 35, Issue 8). Elsevier B.V. https://doi.org/10.1016/j.cclet.2023.109277

Macpherson, J. V. (2015). A practical guide to using boron doped diamond in electrochemical research. Physical Chemistry Chemical Physics, 17(5), 2935–2949. https://doi.org/10.1039/c4cp04022h

Martínez-Castillo, M., García-Montalvo, E. A., Arellano-Mendoza, M. G., Sánchez-Peña, L. del C., Soria Jasso, L. E., Izquierdo-Vega, J. A., Valenzuela, O. L., & Hernández-Zavala, A. (2021). Arsenic exposure and non-carcinogenic health effects. Human and Experimental Toxicology, 40(12_suppl), S826–S850. https://doi.org/10.1177/09603271211045955

Nguyen, M. H., Pham, T. D., Nguyen, T. L., Vu, H. A., Ta, T. T., Tu, M. B., Nguyen, T. H. Y., & Chu, D. B. (2018). Speciation Analysis of Arsenic Compounds by HPLC-ICP-MS: Application for Human Serum and Urine. Journal of Analytical Methods in Chemistry, 2018. https://doi.org/10.1155/2018/9462019

Pasha, C., & Narayana, B. (2008). Determination of arsenic in environmental and biological samples using toluidine blue or safranine O by simple spectrophotometric method. Bulletin of Environmental Contamination and Toxicology, 81(1), 47–51. https://doi.org/10.1007/s00128-008-9454-1

Pramadewandaru, R. K., Lee, Y. W., & Hong, J. W. (2023). Synergistic effect of bimetallic Pd-Pt nanocrystals for highly efficient methanol oxidation electrocatalysts. RSC Advances, 13(39), 27046–27053. https://doi.org/10.1039/d3ra04837c

Rajakovic, L., & Rajakovic-Ognjanovic, V. (2018). Arsenic in Water: Determination and Removal. In Arsenic - Analytical and Toxicological Studies. InTech. https://doi.org/10.5772/intechopen.75531

Savitri, I. N. I., Jiwanti, P. K., Putri, I. Z. D., Irkham, I., Einaga, Y., Supriyanto, G., Wong, Y. H., Srivastava, S. K., & Abdullah, C. A. C. (2023). The Dependence of Boron Concentration in Diamond Electrode for Ciprofloxacin Electrochemical Sensor Application. Indonesian Journal of Chemistry, 23(3), 809–822. https://doi.org/10.22146/ijc.82135

Scholz, F. (2024). Benefits of electrochemistry studies for the majority of students who will not become electrochemists. Journal of Solid State Electrochemistry, 28(3–4), 957–963. https://doi.org/10.1007/s10008-023-05415-y

Shah, A. Q., Kazi, T. G., Baig, J. A., Arain, M. B., Afridi, H. I., Kandhro, G. A., Wadhwa, S. K., & Kolachi, N. F. (2010). Determination of inorganic arsenic species (As3+ and As5+) in muscle tissues of fish species by electrothermal atomic absorption spectrometry (ETAAS). Food Chemistry, 119(2), 840–844. https://doi.org/10.1016/j.foodchem.2009.08.041

Simm, A. O., Banks, C. E., & Compton, R. G. (2005). The electrochemical detection of arsenic (III) at a silver electrode. Electroanalysis, 17(19), 1727–1733. https://doi.org/10.1002/elan.200503299

Song, Y., & Swain, G. M. (2007). Development of a method for total inorganic arsenic analysis using anodic stripping voltammetry and a Au-coated, diamond thin-film electrode. Analytical Chemistry, 79(6), 2412–2420 https://doi.org/10.1021/ac061543f

Sophocleous, M., & Atkinson, J. K. (2017). A review of screen-printed silver/silver chloride (Ag/AgCl) reference electrodes potentially suitable for environmental potentiometric sensors. Sensors and Actuators, A: Physical, 267, 106-120. https://doi.org/10.1016/j.sna.2017.10.013

Stuckey, P. A. (2011). Kinetic studies and electrochemical processes at fuel cell electrodes. Case Western Reserve University.

Toor, S. K., Devi, P., & Bansod, B. K. S. (2015). Electrochemical Detection of Trace Amount of Arsenic (III) at Glassy Carbon Electrode Modified with Au/Fe3O4 Nanocomposites. Aquatic Procedia, 4, 1107–1113. https://doi.org/10.1016/j.aqpro.2015.02.140

Verma, S. K., & Chaurasia, S. (2024). Implicating the effects of consuming water with a high level of arsenic content: highlighting the cause and consequences of arsenic contamination in drinking water. Water Practice and Technology, 19(4), 1071–1083. https://doi.org/10.2166/wpt.2024.072

Wang, Y., Kumar, A. K. S., & Compton, R. G. (2021). Optimising Adsorptive Stripping Voltammetry: Strategies and Limitations. ChemElectroChem, 8(12), 2343–2352. https://doi.org/10.1002/celc.202100679

Yamada, D., Ivandini, T. A., Komatsu, M., Fujishima, A., & Einaga, Y. (2008). Anodic stripping voltammetry of inorganic species of As3+ and As5+ at gold-modified boron doped diamond electrodes. Journal of Electroanalytical Chemistry, 615(2), 145–153. https://doi.org/10.1016/j.jelechem.2007.12.004

Zhang, Y., Li, D., & Compton, R. G. (2022). Arsenic (III) detection with underpotential deposition on gold. Journal of Electroanalytical Chemistry, 909. https://doi.org/10.1016/j.jelechem.2022.116154

Downloads

Published

2024-06-30

How to Cite

Fatah, F. R. A. A., Sitorus, R., Saefumillah, A., Mubarok, H., & Pramadewandaru, R. K. (2024). Advanced electrochemical detection of arsenic using platinum-modified boron-doped diamond by anodic stripping voltammetry. Environmental and Materials, 2(1), 61–76. https://doi.org/10.61511/eam.v2i1.2024.993

Issue

Section

Articles

Citation Check