Study of levofloxacin electrochemical sensors on screen-printed carbon electrodes

Authors

  • Ilmanda Zalzabhila Danistya Putri Universitas Airlangga, Indonesia
  • Prastika Krisma Jiwanti Universitas Airlangga, Indonesia
  • Achmad Badrus Zaman Rifky Romadhon Universitas Airlangga, Indonesia

DOI:

https://doi.org/10.61511/eam.v1i1.2023.96

Keywords:

human & health, levofloxacin, screen printed electrode, square wave voltammetry

Abstract

Levofloxacin (LEV) is a type of fluoroquinolone antibiotic that usually used for treating the bacterial infection. The released of LEV in environment may impact a significant risk to the ecosystems. Thus, a fast and sensitive sensor device is required. In this work, the detection of LEV is carried out using a screen-printed carbon electrode (SPE). The measurement methods used were square wave voltammetry and cyclic voltammetry. The limit of detection and limit quantitation were 4.34 µM, 14.4 µM, respectively. The relative standard deviation was obtained at 5.4%. The %recovery results obtained using screen printed electrode in drug, milk, and wastewater were in the range of 95-110%. The validated method was successfully applied to detect the levofloxacin and resulted in a sensitive and efficient measurement.

References

Altaf, S., Zafar, R., Zaman, W. Q., Ahmad, S., Yaqoob, K., Syed, A., Khan, A. J., Bilal, M., & Arshad, M. (2021). Removal of levofloxacin from aqueous solution by green synthesized magnetite (Fe3O4) nanoparticles using Moringa olifera: Kinetics and reaction mechanism analysis. Ecotoxicology and Environmental Safety, 226, 112826. https://doi.org/10.1016/j.ecoenv.2021.112826

Altiokka, G., Atkosar, Z., & Can, N. O. (2002). The determination of levofloxacin by flow injection analysis using UV detection, potentiometry, and conductometry in pharmaceutical preparations. Journal of Pharmaceutical and Biomedical Analysis, 30(3), 881–885. https://doi.org/10.1016/S0731-7085(02)00354-0

García-Miranda Ferrari, A., Rowley-Neale, S. J., & Banks, C. E. (2021). Screen-printed electrodes: Transitioning the laboratory in-to-the field. Talanta Open, 3, 100032. https://doi.org/10.1016/j.talo.2021.100032

Jiwanti, P.K., Wardhana, B. Y., Sutanto, L. G., & Chanif, M. F. (2022). A Review on Carbon‐based Electrodes for Electrochemical Sensor of Quinolone Antibiotics. ChemistrySelect, 7(15), e202103997. https://doi.org/10.1002/slct.202103997

Jiwanti, P.K., Sitorus, I. R., Kadja, G. T. M., Wafiroh, S., & Einaga, Y. (2022). Electrochemical Sensor of Levofloxacin on Boron-Doped Diamond Electrode Decorated by Nickel Nanoparticles. Indonesian Journal of Chemistry, 22(5), 1321–1329. https://doi.org/10.22146/ijc.73515

Kingsley, M. P., Kalambate, P. K., & Srivastava, A. K. (2016). Simultaneous determination of ciprofloxacin and paracetamol by adsorptive stripping voltammetry using copper zinc ferrite nanoparticles modified carbon paste electrode. RSC Advances, 6(18), 15101–15111. https://doi.org/10.1039/C5RA19861E

Liu, Y. M., Cao, J. T., Tian, W., & Zheng, Y. L. (2008). Determination of levofloxacin and norfloxacin by capillary electrophoresis with electrochemiluminescence detection and applications in human urine. Electrophoresis, 29(15), 3207–3212. https://doi.org/10.1002/elps.200800048

Maleque, M., Hasan, M. R., Hossen, F., & Safi, S. (2012). Development and validation of a simple UV spectrophotometric method for the determination of levofloxacin both in bulk and marketed dosage formulations. Journal of Pharmaceutical Analysis, 2(6), 454–457. https://doi.org/10.1016/j.jpha.2012.06.004

Michot, J. M., Seral, C., Van Bambeke, F., Mingeot-Leclercq, M. P., & Tulkens, P. M. (2005). Influence of efflux transporters on the accumulation and efflux of four quinolones (ciprofloxacin, levofloxacin, garenoxacin, and moxifloxacin) in J774 macrophages. Antimicrobial Agents and Chemotherapy, 49(6), 2429–2437. https://doi.org/10.1128/aac.49.6.2429-2437.2005

Moorthy, N., Raghavendra, N., & Venkatarathnamma, P. N. (2008). Levofloxacin-induced acute psychosis. Indian Journal of Psychiatry, 50(1), 57–58. https://doi.org/10.4103/0019-5545.39762

Noel, G. J. (2009). A Review of Levofloxacin for the Treatment of Bacterial Infections. Clinical Medicine. Therapeutics, 1, CMT.S28. https://doi.org/10.4137/CMT.S2

Ostojić, J., Herenda, S., Bešić, Z., Miloš, M., & Galić, B. (2017). Advantages of an electrochemical method compared to the spectrophotometric kinetic study of peroxidase inhibition by boroxine derivative. Molecules, 22(7), 1120. https://doi.org/10.3390/molecules22071120

Rkik, M., Brahim, M. Ben, & Samet, Y. (2017). Electrochemical determination of levofloxacin antibiotic in biological samples using boron doped diamond electrode. Journal of Electroanalytical Chemistry, 794, 175–181. https://doi.org/10.1016/j.jelechem.2017.04.015

Rodriguez-Mozaz, S., Vaz-Moreira, I., Della Giustina, S. V., Llorca, M., Barceló, D., Schubert, S., ... & Manaia, C. M. (2020). Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environment International, 140, 105733. https://doi.org/10.1016/j.envint.2020.105733

Salem, A. A., & Mossa, H. A. (2012). Method validation and determinations of levofloxacin, metronidazole and sulfamethoxazole in an aqueous pharmaceutical, urine and blood plasma samples using quantitative nuclear magnetic resonance spectrometry. Talanta, 88, 104–114. https://doi.org/10.1016/j.talanta.2011.10.016

Sitovs, A., Sartini, I., & Giorgi, M. (2021). Levofloxacin in veterinary medicine: a literature review. Research in Veterinary Science, 137, 111–126. https://doi.org/10.1016/j.rvsc.2021.04.031

Szerkus, O., Jacyna, J., Gibas, A., Sieczkowski, M., Siluk, D., Matuszewski, M., Kaliszan, R., & Markuszewski, M. J. (2017). Robust HPLC–MS/MS method for levofloxacin and ciprofloxacin determination in human prostate tissue. Journal of Pharmaceutical and Biomedical Analysis, 132, 173–183. https://doi.org/10.1016/j.jpba.2016.10.008

Szerkus, O., Jacyna, J., Wiczling, P., Gibas, A., Sieczkowski, M., Siluk, D., Matuszewski, M., Kaliszan, R., & Markuszewski, M. J. (2016). Ultra-high performance liquid chromatographic determination of levofloxacin in human plasma and prostate tissue with use of experimental design optimization procedures. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1029, 48–59. https://doi.org/10.1016/j.jchromb.2016.06.051

Tang, L., Tong, Y., Zheng, R., Liu, W., Gu, Y., Li, C., Chen, R., & Zhang, Z. (2014). Ag nanoparticles and electrospun CeO2-Au composite nanofibers modified glassy carbon electrode for determination of levofloxacin. Sensors and Actuators, B: Chemical, 203, 95–101. https://doi.org/10.1016/j.snb.2014.06.089

Tsai, Y. H., Bair, M. J., & Hu, C. C. (2007). Determination of levofloxacin in human urine with capillary electrophoresis and fluorescence detector. Journal of the Chinese Chemical Society, 54(4), 991–995. https://doi.org/10.1002/jccs.200700142

Wang, F., Zhu, L., & Zhang, J. (2014). Electrochemical sensor for levofloxacin based on molecularly imprinted polypyrrole-graphene-gold nanoparticles modified electrode. Sensors and Actuators, B: Chemical, 192, 642–647. https://doi.org/10.1016/j.snb.2013.11.037

Downloads

Published

2023-06-29

How to Cite

Putri, I. Z. D., Jiwanti, P. K., & Romadhon, A. B. Z. R. (2023). Study of levofloxacin electrochemical sensors on screen-printed carbon electrodes. Environmental and Materials, 1(1). https://doi.org/10.61511/eam.v1i1.2023.96

Issue

Section

Articles

Citation Check