Construction of an enzymatic biosensor for chlorpyrifos pesticide detection via acetylcholinesterase inhibition on oxidative boron-doped diamond electrode

Authors

  • Abdul Basit Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia
  • Ferinastiti Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia
  • Yudhistira Tesla Singota Solutions, Bloomington, Indiana 47401, United States
  • Fadlinatin Naumi Department of Chemical Engineering, Faculty of Engineering, Universitas Al-Khairiyah, Cilegon, West Java 42441, Indonesia

DOI:

https://doi.org/10.61511/eam.v2i1.2024.890

Keywords:

acetylthiocholine chloride (ATCl), chlorpyrifos pesticide (CP), magnetic beads, oxidative boron-doped diamond electrode (OBDD)

Abstract

Background: The extensive utilization of pesticides in agricultural practices presents considerable environmental and health hazards, which calls for the creation of precise and specialized detection techniques. Methods: This study focuses on the development of an enzymatic biosensor designed to detect chlorpyrifos pesticide residues. The biosensor employs an oxidative boron-doped diamond (OBDD) electrode as the transducer platform, offering exceptional sensitivity and stability. The detection mechanism is based on the inhibition of acetylcholinesterase (AChE) activity on the OBDD surface. Various factors were optimized to assess the precision and sensitivity limit of the developed sensor. The cyclic voltammetry (CV) results indicated that the presence of AChE is necessary for acetylthiocholine chloride (ATCl) to generate an electrical signal. To enhance detection, AChE was modified with magnetic beads. Findings: This modification facilitated the oxidation of ATCl to thiocholine chloride, an oxidation peak of thiocholine could be observed at the magnetic beads modified AChE-Biotin/OBDD at a potential of +0.804 V (vs. Ag/AgCl), formed by an enzymatic reaction of AChE in the presence of acetylthiocholine. The current signal decreased due to the inhibition of AChE activity by chlorpyrifos pesticide. The oxidation current of thiocholine chloride consistently decreased as the chlorpyrifos concentration increased within the range of 0.001nM to 10nM at the optimum condition of 50 mM phosphate buffer solution pH 7.6; 250 mu/5 mL AChE; and 1 mM ATCl in an inhibition and contact time of 30 and 15 min, respectively. The regression equation obtained using magnetic beads modified by AChE-Biotin is y = 0.043ln(x) + 1.074, with an R² value of 0.9062. The sensor demonstrated a lower limit of detection value of 0.6551nM. Conclusion: Furthermore, the developed sensor proved suitable for testing real samples of tap water, showing minimal interference with a % RSD value lower than 10%. Novelty/Originality of this Study: This study introduces a novel enzyme-based biosensor using oxidative boron-doped diamond (OBDD) electrodes for detecting chlorpyrifos pesticide. The originality lies in the use of electrochemically modified BDD, which enhances enzyme immobilization and stability, providing higher sensitivity and lower detection limits compared to traditional methods.

References

Alex, A. V., & Mukherjee, A. (2021). Review of recent developments (2018–2020) on acetylcholinesterase inhibition based biosensors for organophosphorus pesticides detection. Microchemical Journal, 161, 105779. https://doi.org/10.1016/j.microc.2020.105779

Chauhan, N., & Pundir, C. S. (2011). An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides. Analytica Chimica Acta, 701(1), 66–74. https://doi.org/10.1016/j.aca.2011.06.014

Das, S., & Adhya, T. K. (2015). Degradation of chlorpyrifos in tropical rice soils. Journal of Environmental Management, 152, 36–42. https://doi.org/10.1016/j.jenvman.2015.01.025

Dewi, F. Y., Cahyono, S. T., Hilmi, F., Sanjaya, A. R., Hastuti, D. W., Pratiwi, N. I., Aliwarga, H. K., Prajitno, P., Ivandini, T. A., & Handoko, D. (2024). Electrochemical performance of gold nanoparticles decorated on Multi-walled Carbon Nanotube (MWCNT) Screen-printed Electrode (SPE). ITM Web of Conferences, 61, 01019. https://doi.org/10.1051/itmconf/20246101019

Du, X., Wang, P., Fu, L., Liu, H., Zhang, Z., & Yao, C. (2020). Determination of chlorpyrifos in pears by raman spectroscopy with random forest regression analysis. Analytical Letters, 53(6), 821–833. https://doi.org/10.1080/00032719.2019.1681439

Farsani, A. T., Arabi, M., & Shadkhast, M. (2021). Ecotoxicity of chlorpyrifos on earthworm Eisenia fetida (Savigny, 1826): Modifications in oxidative biomarkers. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 249, 109145. https://doi.org/10.1016/j.cbpc.2021.109145

Gaonkar, O., Nambi, I. M., & Suresh Kumar, G. (2019). Biodegradation kinetics of dichlorvos and chlorpyrifos by enriched bacterial cultures from an agricultural soil. Bioremediation Journal, 23(4), 259–276. https://doi.org/10.1080/10889868.2019.1671791

Govindasamy, M., Mani, V., Chen, S. M., Chen, T. W., & Sundramoorthy, A. K. (2017). Methyl parathion detection in vegetables and fruits using silver@graphene nanoribbons nanocomposite modified screen printed electrode. Scientific Reports, 7. https://doi.org/10.1038/srep46471

He, Y., Xiao, S., Dong, T., & Nie, P. (2019). Gold nanoparticles with different particle sizes for the quantitative determination of chlorpyrifos residues in soil by SERS. International Journal of Molecular Sciences, 20(11). https://doi.org/10.3390/ijms20112817

Hongsibsong, S., Prapamontol, T., Xu, T., Hammock, B. D., Wang, H., Chen, Z. J., & Xu, Z. L. (2020). Monitoring of the organophosphate pesticide chlorpyrifos in vegetable samples from local markets in Northern Thailand by developed immunoassay. International Journal of Environmental Research and Public Health, 17(13), 1–14. https://doi.org/10.3390/ijerph17134723

Ivandini, T. A., & Einaga, Y. (2017). Polycrystalline boron-doped diamond electrodes for electrocatalytic and electrosynthetic applications. Chemical Communications, 53(8), 1338–1347. https://doi.org/10.1039/c6cc08681k

Ivandini, T. A., Watanabe, T., Matsui, T., Ootani, Y., Iizuka, S., Toyoshima, R., Kodama, H., Kondoh, H., Tateyama, Y., & Einaga, Y. (2019). Influence of Surface Orientation on Electrochemical Properties of Boron-Doped Diamond. Journal of Physical Chemistry C, 123(9), 5336–5344. https://doi.org/10.1021/acs.jpcc.8b10406

Jankuloska, V., Karov, I., Pavlovska, G., & Buzlevski, I. (2017). Determination of Chlorpyrifos in Apple from the Resen Region. Journal of Faculty of Food Engineering, 16(1). http://fia-old.usv.ro/fiajournal/index.php/FENS/article/view/466

Jepson, C., Murray, K., Jepson, P. C., Murray, K., Bach, O., Bonilla, M. A., & Neumeister, L. (2020). Selection of pesticides to reduce human and environmental health risks: a global guideline and minimum pesticides list. Lancet Planet Health, 4, e56-63. https://doi.org/10.1016/S2542-5196(19)30266-9

Jiao, W., Ding, G., Wang, L., Liu, Y., & Zhan, T. (2022). Polyaniline functionalized CoAl-layered double hydroxide nanosheets as a platform for the electrochemical detection of carbaryl and isoprocarb. Microchimica Acta, 189(2). https://doi.org/10.1007/s00604-022-05183-y

Karpouzas, D. G., & Singh, B. K. (2006). Microbial Degradation of Organophosphorus Xenobiotics: Metabolic Pathways and Molecular Basis. Advances in Microbial Physiology, 51(SUPPL.), 119–225. https://doi.org/10.1016/S0065-2911(06)51003-3

Kaur, R., & Goyal, D. (2019). Toxicity and degradation of the insecticide monocrotophos. In Environmental Chemistry Letters (Vol. 17, Issue 3, pp. 1299–1324). Springer Verlag. https://doi.org/10.1007/s10311-019-00884-y

Lee, K., Mazare, A., & Schmuki, P. (2014). One-dimensional titanium dioxide nanomaterials: Nanotubes. Chemical Reviews, 114(19), 9385–9454. https://doi.org/10.1021/CR500061M/ASSET/IMAGES/CR500061M.SOCIAL.JPEG_V03

Li, A., Liu, X., Kong, J., Huang, R., & Wu, C. (2008). Chemiluminescence determination of organophosphorus pesticides chlorpyrifos in vegetables. Analytical Letters, 41(8), 1375–1386. https://doi.org/10.1080/00032710802119228

Liu, T., Xu, M., Yin, H., Ai, S., Qu, X., & Zong, S. (2011). A glassy carbon electrode modified with graphene and tyrosinase immobilized on platinum nanoparticles for sensing organophosphorus pesticides. Microchimica Acta, 175(1–2), 129–135. https://doi.org/10.1007/s00604-011-0665-5

Ma, P., Wang, L., Xu, L., Li, J., Zhang, X., & Chen, H. (2020). Rapid quantitative determination of chlorpyrifos pesticide residues in tomatoes by surface-enhanced Raman spectroscopy. European Food Research and Technology, 246(1), 239–251. https://doi.org/10.1007/s00217-019-03408-8

Nagabooshanam, S., Roy, S., Mathur, A., Mukherjee, I., Krishnamurthy, S., & Bharadwaj, L. M. (2019). Electrochemical micro analytical device interfaced with portable potentiostat for rapid detection of chlorpyrifos using acetylcholinesterase conjugated metal organic framework using Internet of things. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-56510-y

Nandhini, A. R., Harshiny, M., & Gummadi, S. N. (2021). Chlorpyrifos in environment and food: A critical review of detection methods and degradation pathways. In Environmental Science: Processes and Impacts (Vol. 23, Issue 9, pp. 1255–1277). Royal Society of Chemistry. https://doi.org/10.1039/d1em00178g

Norbert Adum, A., Gibson, G., Mwagandi Chimbevo, L., Sifuna Oshule, P., Essuman, S., & Nyabiba Asamba, M. (2021). Detection and Quantification of Chlorpyrifos in Soil, Milk, Dip Wash, Spray Race Residues Using High Performance Liquid Chromatography in Selected Dairy Farms in Kenya. Science Journal of Analytical Chemistry, 9(4), 88. https://doi.org/10.11648/j.sjac.20210904.12

Pelit, F. O., Pelit, L., Ertaş, H., & Nil Ertaş, F. (2012). Development of a gas chromatographic method for the determination of Chlorpyrifos and its metabolite Chlorpyrifos-oxon in wine matrix. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 904, 35–41. https://doi.org/10.1016/j.jchromb.2012.07.006

Pino, F., Ivandini, T. A., Nakata, K., Fujishima, A., Merkoçi, A., & Einaga, Y. (2015). Magnetic enzymatic platform for organophosphate pesticide detection using boron-doped diamond electrodes. Analytical Sciences, 31(10), 1061–1068. https://doi.org/10.2116/ANALSCI.31.1061/METRICS

Rachmawati, A., Sanjaya, A. R., Putri, Y. M. T. A., Gunlazuardi, J., & Ivandini, T. A. (2023). An acetylcholinesterase-based biosensor for isoprocarb using a gold nanoparticles-polyaniline modified graphite pencil electrode. Analytical Sciences, 39(6), 911–923. https://doi.org/10.1007/s44211-023-00296-7

Rahmawati, I., Fiorani, A., Sanjaya, A. R., Irkham, Du, J., Saepudin, E., Einaga, Y., & Ivandini, T. A. (2024). Modification of boron-doped diamond electrode with polyaniline and gold particles to enhance the electrochemiluminescence of luminol for the detection of reactive oxygen species (hydrogen peroxide and hypochlorite). Diamond and Related Materials, 144. https://doi.org/10.1016/j.diamond.2024.110956

Ramin, M., Omidi, F., Khadem, M., & Shahtaheri, S. J. (2021). Combination of dispersive solid-phase extraction with dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for trace determination of chlorpyrifos in urine samples. International Journal of Environmental Analytical Chemistry, 101(6), 810–820. https://doi.org/10.1080/03067319.2019.1672670

Rawtani, D., Khatri, N., Tyagi, S., & Pandey, G. (2018). Nanotechnology-based recent approaches for sensing and remediation of pesticides. In Journal of Environmental Management, 206, 749–762. Academic Press. https://doi.org/10.1016/j.jenvman.2017.11.037

Sinha, S. N., Rao, M. V. V., & Vasudev, K. (2012). Distribution of pesticides in different commonly used vegetables from Hyderabad, India. Food Research International, 45(1), 161–169. https://doi.org/10.1016/j.foodres.2011.09.028

Talan, A., Mishra, A., Eremin, S. A., Narang, J., Kumar, A., & Gandhi, S. (2018). Ultrasensitive electrochemical immuno-sensing platform based on gold nanoparticles triggering chlorpyrifos detection in fruits and vegetables. Biosensors and Bioelectronics, 105, 14–21. https://doi.org/10.1016/j.bios.2018.01.013

Tay, B. Y. P., & Wai, W. H. (2021). A gas chromatography–mass spectrometry method for the detection of chlorpyrifos contamination in palm-based fatty acids. Journal of the American Oil Chemists’ Society, 98(8), 881–887. https://doi.org/10.1002/AOCS.12512

Wahyuni, W. T., Ivandini, T. A., Saepudin, E., & Einaga, Y. (2016). Zanamivir immobilized magnetic beads for voltammetric measurement of neuraminidase at gold-modified boron doped diamond electrode. AIP Conference Proceedings, 1729. https://doi.org/10.1063/1.4946958

Wei, M., Zeng, G., & Lu, Q. (2014). Determination of organophosphate pesticides using an acetylcholinesterase-based biosensor based on a boron-doped diamond electrode modified with gold nanoparticles and carbon spheres. Microchimica Acta, 181(1–2), 121–127. https://doi.org/10.1007/s00604-013-1078-4

Williams, A. J. K., Norcross, A. J., Chandler, K. A., & Bingley, P. J. (2006). Non-specific binding to protein A Sepharose and protein G Sepharose in insulin autoantibody assays may be reduced by pre-treatment with glycine or ethanolamine. Journal of Immunological Methods, 314(1–2), 170–173. https://doi.org/10.1016/j.jim.2006.06.003

Xue, R., Kang, T. F., Lu, L. P., & Cheng, S. Y. (2012). Immobilization of acetylcholinesterase via biocompatible interface of silk fibroin for detection of organophosphate and carbamate pesticides. Applied Surface Science, 258(16), 6040–6045. https://doi.org/10.1016/j.apsusc.2012.02.123

Yang, L., Wang, G., & Liu, Y. (2013). An acetylcholinesterase biosensor based on platinum nanoparticles- carboxylic graphene-nafion-modified electrode for detection of pesticides. Analytical Biochemistry, 437(2), 144–149. https://doi.org/10.1016/j.ab.2013.03.004

Yuan, Y., Chen, C., Zheng, C., Wang, X., Yang, G., Wang, Q., & Zhang, Z. (2014). Residue of chlorpyrifos and cypermethrin in vegetables and probabilistic exposure assessment for consumers in Zhejiang Province, China. Food Control, 36(1), 63–68. https://doi.org/10.1016/j.foodcont.2013.08.008

Zamora-Sequeira, R., Starbird-Pérez, R., Rojas-Carillo, O., & Vargas-Villalobos, S. (2019). What are the main sensor methods for quantifying pesticides in agricultural activities? A review. In Molecules (Vol. 24, Issue 14). MDPI AG. https://doi.org/10.3390/molecules24142659

Zhu, X., Li, W., Wu, R., Liu, P., Hu, X., Xu, L., Xiong, Z., Wen, Y., & Ai, S. (2021). Rapid detection of chlorpyrifos pesticide residue in tea using surface-enhanced Raman spectroscopy combined with chemometrics. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 250. https://doi.org/10.1016/j.saa.2020.119366

Downloads

Published

2024-06-30

How to Cite

Basit, A., Ferinastiti, Tesla, Y., & Naumi, F. (2024). Construction of an enzymatic biosensor for chlorpyrifos pesticide detection via acetylcholinesterase inhibition on oxidative boron-doped diamond electrode. Environmental and Materials, 2(1), 12–28. https://doi.org/10.61511/eam.v2i1.2024.890

Issue

Section

Articles

Citation Check