Synthesis of gold nanoparticles with allicin to modify boron-doped diamond surface for oxygen sensor applications

Authors

  • Toto Raharto Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Department of Chemistry, Faculty of Science and Technology, Universitas Teknologi Nusantara, Indonesia
  • Cahya Mukti Setiyanto Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Indonesia https://orcid.org/0000-0002-5851-2178
  • Harits Atika Ariyanta Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Department of Pharmacy, Universitas Gunadarma, Indonesia https://orcid.org/0000-0003-4362-5361
  • Dinda Prastika Nabila Nahda Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Indonesia
  • Adinda Muthia Hani Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Indonesia
  • Yoki Yulizar Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Indonesia https://orcid.org/0000-0002-1603-7217
  • Tribidasari Anggraningrum Ivandini Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Indonesia https://orcid.org/0000-0002-5282-5325
  • Yasuaki Einaga Science and Technology, Keio University Japan, Japan

DOI:

https://doi.org/10.61511/eam.v1i2.2023.560

Keywords:

allicin, boron doped diammond, electrosensor, gold nanoparticle, oxygen sensor

Abstract

Modification of surface of boron-doped diamond (BDD) film with gold nanoparticles (AuNPs) was carried out to increase its catalytic activity for an application as an oxygen sensor. Allicin was isolated from garlic by salting out extraction technique, and then used as the capping agent to synthesize AuNPs as it has a double bond structure that could be reacted to attach the BDD surface under UV light radiation. An average size of AuNPs at around 46,00 ± 9,06 nm was obtained, while the modification of the BDD surface by the synthesized AuNPs indicated that the surface of BDD could be covered by gold at around 0.6 % (w/w). Investigation of the AuNPs-modified BDD as a working electrode for the oxygen reduction by using cyclic voltammograms in 0.1 M phosphate buffer solution pH 7 observed a current peak at around -0.45 V (vs. Ag/AgCl). The current of this peak linearly increased proportionally to the dissolved oxygen concentrations (R2=0.9986). Moreover, a limit of detection of the dissolved oxygen of 0.12 ppm and limit of quantity 0.41 ppm could be achieved with excellent stability at 6.86% RSD with 6 repetitions and sensitivity at 19.086 μA/ppm indicated that the modified BDD is promising for applications as an oxygen sensor.

References

Ariyanta, H. A., Ivandini, T. A., & Yulizar, Y. (2021a). Novel NiO nanoparticles via phytosynthesis method: Structural, morphological and optical properties. Journal of Molecular Structure, 1227, 129543. https://doi.org/10.1016/j.molstruc.2020.129543

Ariyanta, H. A., Ivandini, T. A., & Yulizar, Y. (2021b). Poly(methyl orange)-modified NiO/MoS2/SPCE for a non-enzymatic detection of cholesterol. FlatChem, 29, 100285. https://doi.org/10.1016/j.flatc.2021.100285

Chee, G.-J., Nomura, Y., Ikebukuro, K., & Karube, I. (1999). Development of highly sensitive BOD sensor and its evaluation using preozonation. Analytica Chimica Acta, 394(1), 65–71. https://doi.org/10.1016/S0003-2670(99)00289-5

Chee, G.-J., Nomura, Y., & Karube, I. (1999). Biosensor for the estimation of low biochemical oxygen demand. Analytica Chimica Acta, 379(1–2), 185–191. https://doi.org/10.1016/S0003-2670(98)00680-1

Chiang, H.-C., Wang, Y., Zhang, Q., & Levon, K. (2019). Optimization of the Electrodeposition of Gold Nanoparticles for the Application of Highly Sensitive, Label-Free Biosensor. Biosensors, 9(2), 50. https://doi.org/10.3390/bios9020050

Faruk Hossain, M., McCracken, S., & Slaughter, G. (2021). Electrochemical laser induced graphene-based oxygen sensor. Journal of Electroanalytical Chemistry, 899, 115690. https://doi.org/10.1016/j.jelechem.2021.115690

FU, L., ZHENG, Y., FU, Z., WANG, A., & CAI, W. (2015). Dissolved oxygen detection by galvanic displacement-induced graphene/silver nanocomposite. Bulletin of Materials Science, 38(3), 611–616. https://doi.org/10.1007/s12034-015-0900-5

Fujimori, N., Imai, T., & Doi, A. (1986). Characterization of conducting diamond films. Vacuum, 36(1–3), 99–102. https://doi.org/10.1016/0042-207X(86)90279-4

Gunlazuardi, J., Kurniawan, A. D., Jiwanti, P. K., Einaga, Y., & Ivandini, T. A. (2022). Core–shell copper-gold nanoparticles modified at the boron-doped diamond electrode for oxygen sensors. Analytical Methods, 14(7), 726–733. https://doi.org/10.1039/D1AY01942B

Hutton, L., Newton, Mark. E., Unwin, P. R., & Macpherson, J. V. (2009). Amperometric Oxygen Sensor Based on a Platinum Nanoparticle-Modified Polycrystalline Boron Doped Diamond Disk Electrode. Analytical Chemistry, 81(3), 1023–1032. https://doi.org/10.1021/ac8020906

Ivandini, T. A., & Einaga, Y. (2021). Electrochemical Sensing Applications Using Diamond Microelectrodes. Bulletin of the Chemical Society of Japan, 94(12), 2838–2847. https://doi.org/10.1246/bcsj.20210296

Ivandini, T. A., Luhur, M. S. P., Khalil, M., & Einaga, Y. (2021). Modification of boron-doped diamond electrodes with gold–palladium nanoparticles for an oxygen sensor. The Analyst, 146(9), 2842–2850. https://doi.org/10.1039/D0AN02414G

Ivandini, T. A., Saepudin, E., Wardah, H., Harmesa, Dewangga, N., & Einaga, Y. (2012). Development of a Biochemical Oxygen Demand Sensor Using Gold-Modified Boron Doped Diamond Electrodes. Analytical Chemistry, 84(22), 9825–9832. https://doi.org/10.1021/ac302090y

Li, F., Li, Q., Wu, S., & Tan, Z. (2017). Salting-out extraction of allicin from garlic (Allium sativum L.) based on ethanol/ammonium sulfate in laboratory and pilot scale. Food Chemistry, 217, 91–97. https://doi.org/10.1016/j.foodchem.2016.08.092

Li, Y., Sun, J., Wang, J., Bian, C., Tong, J., Li, Y., & Xia, S. (2016). A single-layer structured microbial sensor for fast detection of biochemical oxygen demand. Biochemical Engineering Journal, 112, 219–225. https://doi.org/10.1016/j.bej.2016.04.021

Meen, T.-H., Tsai, J.-K., Chao, S.-M., Lin, Y.-C., Wu, T.-C., Chang, T.-Y., Ji, L.-W., Water, W., Chen, W.-R., Tang, I.-T., & Huang, C.-J. (2013). Surface plasma resonant effect of gold nanoparticles on the photoelectrodes of dye-sensitized solar cells. Nanoscale Research Letters, 8(1), 450. https://doi.org/10.1186/1556-276X-8-450

Nguyen, B. T., Hong, H. T., O’Hare, T. J., Wehr, J. B., Menzies, N. W., & Harper, S. M. (2021). A rapid and simplified methodology for the extraction and quantification of allicin in garlic. Journal of Food Composition and Analysis, 104, 104114. https://doi.org/10.1016/j.jfca.2021.104114

Okano, K., Kurosu, T., Iida, M., Eickhoff, T., Wilhelm, H., & Zahn, D. R. T. (1990). An optical investigation of diamond thin films on silicon. Vacuum, 41(4–6), 1387–1389. https://doi.org/10.1016/0042-207X(90)93965-L

Read, T. L., Cobb, S. J., & Macpherson, J. V. (2019). An sp 2 Patterned Boron Doped Diamond Electrode for the Simultaneous Detection of Dissolved Oxygen and pH. ACS Sensors, 4(3), 756–763. https://doi.org/10.1021/acssensors.9b00137

Sánchez‐Iglesias, A., Claes, N., Solís, D. M., Taboada, J. M., Bals, S., Liz‐Marzán, L. M., & Grzelczak, M. (2018). Reversible Clustering of Gold Nanoparticles under Confinement. Angewandte Chemie, 130(12), 3237–3240. https://doi.org/10.1002/ange.201800736

Sanz, C. G., Mihaila, A. C., Evanghelidis, A., Diculescu, V. C., Butoi, E., & Barsan, M. M. (2022). Quantification of cell oxygenation in 2D constructs of metallized electrospun polycaprolactone fibers encapsulating human valvular interstitial cells. Journal of Electroanalytical Chemistry, 905, 116005. https://doi.org/10.1016/j.jelechem.2021.116005

Tenne, R., Patel, K., Hashimoto, K., & Fujishima, A. (1993). Efficient electrochemical reduction of nitrate to ammonia using conductive diamond film electrodes. Journal of Electroanalytical Chemistry, 347(1–2), 409–415. https://doi.org/10.1016/0022-0728(93)80105-Q

Toghill, K. E., & Compton, R. G. (2010). Metal Nanoparticle Modified Boron Doped Diamond Electrodes for Use in Electroanalysis. Electroanalysis, 22(17–18), 1947–1956. https://doi.org/10.1002/elan.201000072

Yadav, S., Sharma, T., Kaushik, R., & Malhotra, P. (2023). Peroxidase mimicking activity of Saccharum officinarum L. capped gold nanoparticles using o -dianisidine as a substrate. New Journal of Chemistry, 47(5), 2372–2382. https://doi.org/10.1039/D2NJ05278D

Yulizar, Y., Ariyanta, H. A., & Abduracman, L. (2017). Green Synthesis of Gold Nanoparticles using Aqueous Garlic (Allium sativum L.) Extract, and Its Interaction Study with Melamine. Bulletin of Chemical Reaction Engineering & Catalysis, 12(2), 212–218. https://doi.org/10.9767/bcrec.12.2.770.212-218

Downloads

Published

2023-12-31

How to Cite

Raharto, T., Setiyanto, C. M., Ariyanta, H. A., Nahda, D. P. N., Hani, A. M., Yulizar, Y., … Einaga, Y. (2023). Synthesis of gold nanoparticles with allicin to modify boron-doped diamond surface for oxygen sensor applications. Environmental and Materials, 1(2). https://doi.org/10.61511/eam.v1i2.2023.560

Issue

Section

Articles

Citation Check