Synthesis and characterization silica-MB@GO-NH2 particle as fluorescence-based chlorine sensor

Authors

  • Fadhlir Rahman Aufar Al Fatah Department of Chemistry, Mathematics and Natural Sciences, Universitas Indonesia, Indonesia
  • Isnaini Rahmawati Department of Chemistry, Mathematics and Natural Sciences, Universitas Indonesia, Indonesia
  • Jarnuzi Gunlazuardi Department of Chemistry, Mathematics and Natural Sciences, Universitas Indonesia, Indonesia
  • Afiten Rahmin Sanjaya Department of Chemistry, Mathematics and Natural Sciences, Universitas Indonesia, Indonesia

DOI:

https://doi.org/10.61511/eam.v1i2.2023.399

Keywords:

fluorescence, NaOCl, paper-based sensor, particle, sensor

Abstract

In this research, we developed a fluorescence-based sensor to determine the sodium hypochlorite concentration (NaOCl) in tap water and swimming pool water samples. The detection of NaOCl was conducted by measuring the luminescence response of analyte in the paper-based sensor modified Silica-MB@GO-NH2 material were synthesized using Hummer's and Stober's methods under UV Light irradiation. Additionally, the prepared material exposed a couple peak 2D and 2G at 2938 cm-1 and 3286 cm-1 with ID/IG ratio 0.98 using Raman characterization which appropriate with the presence of GO structure in the mixture. This result was validated by the appearance of several functional groups like Si-O-Si, NH, OH, and C-C at 1079, 1391, 1611, and 3457 cm-1, respectively. Moreover, the existence of Si-O-Si bond indicates that the silica-MB interaction was perfectly formed, which plays the main role to absorb ultraviolet light that is used as sensor probe. The morphology of particles depicted an aggregated formation of spherical structure with 288 nm particle size, indicating the existence of silica-coated methylene blue. In this work, the paper-based sensor modified Silica-MB@GO-NH2 can detect the NaOCl species with concentration range 10-150 µM (R2 = 0.9757), a detection limit at 2.60 µM and quantification limit at 7.88 µM. Furthermore, this developed sensor has stable measurement with recovery performance 3.65%-6.67% for tap water and 0.05%–0.14% for swimming pool water. This result indicates that the prepared sensor can be potentially applied to calculate the hypochlorite species in the aquatic environment.

References

Algar, W. R., De Jong, C. A. G., Maxwell, E. J., & Atkins, C. G. (2016). Demonstration of the Spectrophotometric Complementary Color Wheel Using LEDs and Indicator Dyes. Journal of Chemical Education, 93(1), 162–165.

https://doi.org/10.1021/acs.jchemed.5b00665

Armbruster, D. A., & Pry, T. (2008). Limit of Blank, Limit of Detection and Limit of Quantitation. In Clin Biochem Rev (Vol. 29).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556583/

Baek, Y., Kim, J., Ahn, J., Jo, I., Hong, S., Ryu, S., & Ha, N. C. (2020). Structure and function of the hypochlorous acid-induced flavoprotein RclA from Escherichia coli. Journal of Biological Chemistry, 295(10), 3202–3212. https://doi.org/10.1074/jbc.RA119.011530

Böger, R., Rohn, K., Kemper, N., & Schulz, J. (2020). Sodium hypochlorite treatment: The impact on bacteria and endotoxin concentrations in drinking water pipes of a pig nursery. Agriculture (Switzerland), 10(3).

https://doi.org/10.3390/agriculture10030086

Bose, A., Thomas, I., & Abraham, E. (2018). International Journal of Advances in Pharmaceutical Analysis Fluorescence spectroscopy and its applications: A Review QR Code *Correspondence Info. International Journal of Advances in Pharmaceutical Analysis. https://doi.org/10.7439/ijapa

Bose, A., Thomas, I., Kavitha, G., Abraham, E., & Bose, A. (2018). International Journal of Advances in Pharmaceutical Analysis Fluorescence spectroscopy and its applications: A Review * Article History: 08(01), 1–8: https://doi.org/10.7439/ijapa.v8i1.4578

Budner, O., Cwalinski, T., Skokowski, J., Marano, L., Resca, L., Cwalina, N., Kalinowski, L., Hoveling, R., Roviello, F., & Polom, K. (2022). Methylene Blue Near-Infrared Fluorescence Imaging in Breast Cancer Sentinel Node Biopsy. Cancers, 14(7). https://doi.org/10.3390/cancers14071817

Carlsson, K., Moberg, L., & Karlberg, B. O. (1999). The Miniaturisation of the Standard Method Based on the n, n’ -diethyl- p -phenylenediamine (dpd) Reagent for the Determination of Free or Combined Chlorine. 33(2). https://doi.org/10.1016/S0043-1354(98)00203-6

Chung, I., Ryu, H., Yoon, S. Y., & Ha, J. C. (2022). Health effects of sodium hypochlorite: review of published case reports. In Environmental Analysis Health and Toxicology (Vol. 37, Issue 1). https://doi.org/10.5620/eaht.2022006

Cwalinski, T., Polom, W., Marano, L., Roviello, G., D’angelo, A., Cwalina, N., Matuszewski, M., Roviello, F., Jaskiewicz, J., & Polom, K. (2020). Methylene blue—current knowledge, fluorescent properties, and its future use. In Journal of Clinical Medicine (Vol. 9, Issue 11, pp. 1–12). MDPI. https://doi.org/10.3390/jcm9113538

Das, A., Chakraborty, B., & Sood, A. K. (2007). Raman spectroscopy of graphene on different substrates and influence of defects. http://arxiv.org/abs/0710.4160

Di, Y., Cui, X., Liu, Y., Zhou, C., Ren, Y., Di, Y., & Yang, X. (2019). Crystal structure, optical properties, and antibacterial activity of rare earth complexes with designed 2-carbonyl propionic acid-4-nitro benzoyl hydrazone. Polyhedron, 171, 571–577. https://doi.org/10.1016/j.poly.2019.07.036

Enderlein, J., Ruckstuhl, T., & Seeger, S. (1999). Highly efficient optical detection of surface-generated fluorescence. Applied Optics, 38(4), 724.https://doi.org/10.1364/ao.38.000724

Endo, T., Yoshimura, T., & Esumi, K. (2004). Voltammetric study of sodium hypochlorite using dendrimer-stabilized gold nanoparticles. Journal of Colloid and Interface Science, 269(2), 364–369. https://doi.org/10.1016/S0021-9797(03)00674-X

F. Al-Rawashdeh, N. A. (2012). Current Achievement and Future Potential of Fluorescence Spectroscopy. In Macro to Nano Spectroscopy. InTech. https://doi.org/10.5772/48034

Goswami, S., Aich, K., Das, S., & Pakhira, B. (2015). A Triphenyl Amine-Based Solvatofluorochromic Dye for the Selective and Ratiometric Sensing of OCl À in Human Blood Cells. 1–8. https://doi.org/10.1002/asia.201403234

Greasley, S. L., Page, S. J., Sirovica, S., Chen, S., Martin, R. A., Riveiro, A., Hanna, J. V., Porter, A. E., & Jones, J. R. (2016). Controlling particle size in the Stöber process and incorporation of calcium. Journal of Colloid and Interface Science, 469, 213–223. https://doi.org/10.1016/j.jcis.2016.01.065

Huang, H., Wang, Y., Zhang, Y., Niu, Z., & Li, X. (2020). Amino-functionalized graphene oxide for Cr(VI), Cu(II), Pb(II) and Cd(II) removal from industrial wastewater. Open Chemistry, 18(1), 97–107. https://doi.org/10.1515/chem-2020-0009

Huang, X., Li, Z., Cao, T., Cai, Q., Zeng, C., Fu, H., & Hu, L. (2018). A methylene blue-based near-infrared fluorescent probe for rapid detection of hypochlorite in tap water and living cells. RSC Advances, 8(26), 14603–14608. https://doi.org/10.1039/c8ra01037d

Ishmah, S. N., Permana, M. D., Firdaus, M. L., & Eddy, D. R. (2020). Extraction of Silica from Bengkulu Beach Sand using Alkali Fusion Method. 4(2), 1–5. https://doi.org/10.33369/pendipa.4.2.1-5

Ivanda, M., Clasen, R., Hornfeck, M., & Kiefer, W. (2003). Raman spectroscopy on SiO2 glasses sintered from nanosized particles. Journal of Non-Crystalline Solids, 322(1–3), 46–52. https://doi.org/10.1016/S0022-3093(03)00172-8

Jain, R., & Steel, T. (2015). Waterborne inorganic-organic hybrid coatings on magnesium by sol-gel route Submitted for the partial fulfillment of the requirements for the degree of Master of Technology by Rachna Jain Corrosion Science and Engineering Indian Institute of Technology Bom. July. https://doi.org/10.13140/RG.2.1.3457.1368

Li, C., Huang, Y., Lai, K., Rasco, B. A., & Fan, Y. (2016). Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Raman spectroscopy. Food Control, 65, 99–105. https://doi.org/10.1016/j.foodcont.2016.01.017

Liu, J., Chen, S., Liu, Y., & Zhao, B. (2022). Progress in preparation, characterization, surface functional modification of graphene oxide: A review. In Journal of Saudi Chemical Society (Vol. 26, Issue 6). Elsevier B.V. https://doi.org/10.1016/j.jscs.2022.101560

Liu, X., Ma, R., Wang, X., Ma, Y., Yang, Y., Zhuang, L., Zhang, S., Jehan, R., Chen, J., & Wang, X. (2019). Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review. In Environmental Pollution (Vol. 252, pp. 62–73). Elsevier Ltd. https://doi.org/10.1016/j.envpol.2019.05.050

Liu, X., Shi, L., Jiang, W., Zhang, J., & Huang, L. (2018). Taking full advantage of KMnO4 in simplified Hummer’s method: A green and one pot process for the fabrication of alpha MnO2 nanorods on graphene oxide. Chemical Engineering Science, 192, 414–421. https://doi.org/10.1016/j.ces.2018.07.044

Mahović Poljaček, S., Tomašegović, T., Leskovšek, M., & Stanković Elesini, U. (2021). Effect of SiO2 and TiO2 nanoparticles on the performance of uv visible fluorescent coatings. Coatings, 11(8). https://doi.org/10.3390/coatings11080928

Misra, R., & Bhattacharyya, S. P. (2018). Intramolecular Charge Transfer. In Intramolecular Charge Transfer. Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527801916

Moyassari, E., Roth, T., Kücher, S., Chang, C.-C., Hou, S.-C., Spingler, F. B., & Jossen, A. (2022). The Role of Silicon in Silicon-Graphite Composite Electrodes Regarding Specific Capacity, Cycle Stability, and Expansion. Journal of The Electrochemical Society, 169(1), 010504. https://doi.org/10.1149/1945-7111/ac4545

Pattison, D. I., & Davies, M. J. (2006). Evidence for rapid inter- and intramolecular chlorine transfer reactions of histamine and carnosine chloramines: Implications for the prevention of hypochlorous-acid-mediated damage. Biochemistry, 45(26), 8152–8162. https://doi.org/10.1021/bi060348s

Rahman, M. O., Nor, N. B. M., Sawaran Singh, N. S., Sikiru, S., Dennis, J. O., Shukur, M. F. bin A., Junaid, M., Abro, G. E. M., Siddiqui, M. A., & Al-Amin, M. (2023). One-Step Solvothermal Synthesis by Ethylene Glycol to Produce N-rGO for Supercapacitor Applications. Nanomaterials, 13(4). https://doi.org/10.3390/nano13040666

Rahmawati, I., Saepudin, E., Fiorani, A., Einaga, Y., & Ivandini, T. A. (2022a). Electrogenerated chemiluminescence of luminol at a boron-doped diamond electrode for the detection of hypochlorite. Analyst, 147(12), 2696–2702. https://doi.org/10.1039/d2an00540a

Rahmawati, I., Saepudin, E., Fiorani, A., Einaga, Y., & Ivandini, T. A. (2022b). Electrogenerated chemiluminescence of luminol at a boron-doped diamond electrode for the detection of hypochlorite. Analyst, 147(12), 2696–2702. https://doi.org/10.1039/d2an00540a

Roslan, M. S., Chaudary, K. T., Haider, Z., Zin, A. F. M., & Ali, J. (2017). Effect of magnetic field on carbon nanotubes and graphene structure synthesized at low pressure via arc discharge process. AIP Conference Proceedings, 1824.

https://doi.org/10.1063/1.4978843

Sanjaya, A. R., Riyanto, H. G., Rahmawati, I., Putri, Y. M. T. A., Nurhalimah, D., Saepudin, E., Tesla, Y., & Krisnandi, Y. K. (2023). EAM Environmental and Materials EAM 1(1): 28-40 Carbon-coated nickel foam for hypochlorous acid sensor. 1(1).

https://doi.org/10.61511/eam

Shahzad, A., Köhler, G., Knapp, M., Gaubitzer, E., Puchinger, M., & Edetsberger, M. (2009). Emerging applications of fluorescence spectroscopy in the medical microbiology field. In Journal of Translational Medicine (Vol. 7). https://doi.org/10.1186/1479-5876-7-99

Sharma, J., Sharma, S., Bhatt, U., & Soni, V. (2022). Toxic effects of Rhodamine B on antioxidant system and photosynthesis of Hydrilla verticillata. Journal of Hazardous Materials Letters, 3. https://doi.org/10.1016/j.hazl.2022.100069

Smith, A. T., Marie, A., Zeng, S., Liu, B., & Sun, L. (2019). Nano Materials Science Synthesis, properties, and applications of graphene oxide / reduced graphene oxide and their nanocomposites. Nano Materials Science, 1(1), 31–47.

https://doi.org/10.1016/j.nanoms.2019.02.004

Thiagarajan, S., Wu, Z., & Chen, S. (2011). Amperometric determination of sodium hypochlorite at poly MnTAPP-nano Au film modified electrode. Journal of Electroanalytical Chemistry, 661(2), 322–328.

https://doi.org/10.1016/j.jelechem.2011.08.009

Vishwakarma, R. K., Narayanam, P. K., Umamaheswari, R., & Polaki, S. R. (2023). Amino-functionalized graphene oxide membranes for efficient separation of Sr2+ ions. Journal of Water Process Engineering, 51(October 2022), 103329.

https://doi.org/10.1016/j.jwpe.2022.103329

Wang, Y., Yang, L., Liu, B., Yu, S., & Jiang, C. (2018). A colorimetric paper sensor for visual detection of mercury ions constructed with dual-emission carbon dots. New Journal of Chemistry, 42(19), 15671–15677. https://doi.org/10.1039/C8NJ03683G

Wang, Z., Mei, L., Yang, X., Jiang, T., Sun, T., Su, Y., Wu, Y., & Ji, Y. (2023). Near-infrared fluorophores methylene blue for targeted imaging of the stomach in intraoperative navigation. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1172073

Yang, C., Feng, W., Li, Y., Tian, X., Zhou, Z., Lu, L., & Nie, Y. (2019). Graphene oxide based ratiometric fluorescent paper sensor for hypochlorous acid visual detection. Journal of Photochemistry and Photobiology A: Chemistry, 375, 141–147. https://doi.org/10.1016/j.jphotochem.2019.02.021

Yang, Q., Zhang, C., Iravani, S., & Varma, R. S. (2019). Green synthesis of Co3O4 nanoparticles using Euphorbia heterophylla L. leaves extract: characterization and photocatalytic activity Green synthesis of Co3O4 nanoparticles using Euphorbia heterophylla L . leaves extract: characterization and photo. https://doi.org/10.1088/1757-899X/509/1/012105

Yang, W., Zhang, C. G., Qu, H. Y., Yang, H. H., & Xu, J. G. (2004). Novel fluorescent silica nanoparticle probe for ultrasensitive immunoassays. Analytica Chimica Acta, 503(2), 163–169. https://doi.org/10.1016/j.aca.2003.10.045

Yao, Z., Coatsworth, P., Shi, X., Zhi, J., Hu, L., Yan, R., Güder, F., & Yu, H. D. (2022). Paper-based sensors for diagnostics, human activity monitoring, food safety and environmental detection. In Sensors and Diagnostics (Vol. 1, Issue 3, pp. 312–342). Royal Society of Chemistry. https://doi.org/10.1039/d2sd00017b

Downloads

Published

2023-12-31

How to Cite

Fatah, F. R. A. A., Rahmawati, I., Gunlazuardi, J., & Sanjaya, A. R. (2023). Synthesis and characterization silica-MB@GO-NH2 particle as fluorescence-based chlorine sensor. Environmental and Materials, 1(2). https://doi.org/10.61511/eam.v1i2.2023.399

Issue

Section

Articles

Citation Check