Electroreduction of carbon dioxide (CO2) with flow cell system using tin-modified copper foam electrode

Authors

  • Muhammad Iqbal Syauqi Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Indonesia
  • Annisa Titi Cahyani Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Indonesia
  • Yulia Mariana Tesa Ayudia Putri Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Indonesia
  • Prastika Krisma Jiwanti Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Indonesia

DOI:

https://doi.org/10.61511/eam.v1i2.2023.363

Keywords:

carbon dioxide, copper foam, electroreduction, flow system, formic acid, tin

Abstract

In this study, modification of the copper foam (Cuf) electrode with tin (Sn) was carried out with the electrodeposition method for application in CO2 electroreduction.  Characterization using SEM EDX, FTIR, and XRD confirmed the presence of Cu2O, CuO, and SnO2 thin layer mixture on the Cuf/Sn electrode. The electrochemical characteristics of the electrode were examined by using the cyclic voltammetry (CV) technique. Under optimized conditions, electrochemical reduction of CO2 in a flow cell system. At the optimum condition of CO2 reduction in a flow cell system (flow rate of 75 mL/min and –0.6 V vs Ag/AgCl applied potential), the Cuf/Sn electrode exhibited a remarkable 75.79% with an 8.84 µmol/h formic acid production rate. In a comparable experiment, the Cuf/Sn flow system revealed a twofold improvement in the faradaic efficiency compared to the batch system and a threefold increase compared to the unmodified Cuf electrode in the flow system. Stability tests demonstrated consistent performance up to the 4th cycle, followed by a decline in the 5th cycle, potentially indicative of surface deterioration. The elevated performance is attributed to the synergistic effect of the Cu-Sn oxide layer, reinforcing the catalyst’s potential for efficient electrochemical CO2 reduction to formic acid.

References

Abdo, H. S., Sarkar, A., Gupta, M., Sahoo, S., Mohammed, J. A., Ragab, S. A., & Seikh, A. H. (2021). Low‐cost high‐performance SnO2–Cu electrodes for use in direct ethanol fuel cells. Crystals, 11(1), 1–12. https://doi.org/10.3390/cryst11010055

Akram, M., Saleh, A. T., Ibrahim, W. A. W., Awan, A. S., & Hussain, R. (2016). Continuous microwave flow synthesis (CMFS) of nano-sized tin oxide: Effect of precursor concentration. Ceramics International, 42(7), 8613–8619. https://doi.org/10.1016/j.ceramint.2016.02.092

Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton, R. A., & Marland, G. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18866–18870. https://doi.org/10.1073/pnas.0702737104

De Gregorio, G. L., Burdyny, T., Loiudice, A., Iyengar, P., Smith, W. A., & Buonsanti, R. (2020). Facet-Dependent Selectivity of Cu Catalysts in Electrochemical CO2 Reduction at Commercially Viable Current Densities. ACS Catalysis, 4854–4862. https://doi.org/10.1021/acscatal.0c00297

El Bahi, B., Galai, M., Cherkaoui, M., & Takenouti, H. (2020). Electrochemical deposition mechanism of copper-zinc-tin alloy and structural characterization. Surfaces and Interfaces, 19 (January), 100466. https://doi.org/10.1016/j.surfin.2020.100466

Ewis, D., Arsalan, M., Khaled, M., Pant, D., Ba-Abbad, M. M., Amhamed, A., & El-Naas, M. H. (2023). Electrochemical reduction of CO2 into formate/formic acid: A review of cell design and operation. Separation and Purification Technology, 316 (April), 123811. https://doi.org/10.1016/j.seppur.2023.123811

Fan, M., Ma, C., Lei, T., Jung, J., Guay, D., & Qiao, J. (2018). Aqueous-phase electrochemical reduction of CO2 based on SnO2-CuO nanocomposites with improved catalytic activity and selectivity. Catalysis Today, 318 (July 2017), 2–9. https://doi.org/10.1016/j.cattod.2017.09.018

Feaster, J. T., Shi, C., Cave, E. R., Hatsukade, T., Abram, D. N., Kuhl, K. P., Hahn, C., Nørskov, J. K., & Jaramillo, T. F. (2017). Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. ACS Catalysis, 7(7), 4822–4827. https://doi.org/10.1021/acscatal.7b00687

Florides, G. A., & Christodoulides, P. (2009). Global warming and carbon dioxide through sciences. Environment International, 35(2), 390–401. https://doi.org/10.1016/j.envint.2008.07.007

Gonçalves, M. R., Gomes, A., Condeço, J., Fernandes, T. R. C., Pardal, T., Sequeira, C. A. C., & Branco, J. B. (2013). Electrochemical conversion of CO2 to C2 hydrocarbons using different ex situ copper electrodeposits. Electrochimica Acta, 102, 388–392. https://doi.org/10.1016/j.electacta.2013.04.015

Ho, W. C. J., Tay, Q., Qi, H., Huang, Z., Li, J., & Chen, Z. (2017). Photocatalytic and adsorption performances of faceted cuprous oxide (Cu2O) particles for the removal of methyl orange (MO) from aqueous media. Molecules, 22(4). https://doi.org/10.3390/molecules22040677

Ji, Y., & Luo, Y. (2016). New Mechanism for Photocatalytic Reduction of CO2 on the Anatase TiO2(101) Surface: The Essential Role of Oxygen Vacancy. Journal of the American Chemical Society, 138(49), 15896–15902. https://doi.org/10.1021/jacs.6b05695

Jiwanti, P. K., Aritonang, R. P., Abdullah, I., Einaga, Y., & Ivandini, T. A. (2019). Copper-nickel-modified Boron-doped Diamond Electrode for CO2 Electrochemical Reduction Application: A Preliminary Study. Makara Journal of Science, 23(4), 204–209. https://doi.org/10.7454/mss.v23i4.11512

Jiwanti, P. K., Ichzan, A. M., Dewandaru, R. K. P., Atriardi, S. R., Einaga, Y., & Ivandini, T. A. (2020). Improving the CO2 electrochemical reduction to formic acid using iridium-oxide-modified boron-doped diamond electrodes. Diamond and Related Materials, 106(April), 107874. https://doi.org/10.1016/j.diamond.2020.107874

Kondratenko, E. V., Mul, G., Baltrusaitis, J., Larrazábal, G. O., & Pérez-Ramírez, J. (2013). Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy and Environmental Science, 6(11), 3112–3135. https://doi.org/10.1039/c3ee41272e

Li, C. W., & Kanan, M. W. (2012). CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films. Journal of the American Chemical Society, 134(17), 7231–7234. https://doi.org/10.1021/ja3010978

Li, L., Zhao, Z.-J., Hu, C., Yang, P., Yuan, X., Wang, Y., Zhang, L., Moskaleva, L., & Gong, J. (2020). Tuning Oxygen Vacancies of Oxides to Promote Electrocatalytic Reduction of Carbon Dioxide. ACS Energy Letters, 5(2), 552–558. https://doi.org/10.1021/acsenergylett.9b02749

Liu, S., Pang, F., Zhang, Q., Guo, R., Wang, Z., Wang, Y., Zhang, W., & Ou, J. (2018). Stable nanoporous Sn/SnO2 composites for efficient electroreduction of CO2 to formate over wide potential range. Applied Materials Today, 13, 135–143. https://doi.org/10.1016/j.apmt.2018.08.014

Pavithra, K., & Kumar, S. M. S. (2020). Embedding oxygen vacancies at SnO2-CNT surfaces: Via a microwave polyol strategy towards effective electrocatalytic reduction of carbon-dioxide to formate. Catalysis Science and Technology, 10(5), 1311–1322. https://doi.org/10.1039/c9cy01960j

Proietto, F., Rinicella, R., Galia, A., & Scialdone, O. (2023). Electrochemical conversion of CO2 to formic acid using a Sn based cathode: Combined effect of temperature and pressure. Journal of CO2 Utilization, 67 (December 2022), 102338. https://doi.org/10.1016/j.jcou.2022.102338

Saprudin, M. H., Jiwanti, P. K., Saprudin, D., Sanjaya, A. R., Putri, Y. M. T. A., Einaga, Y., & Ivandini, T. A. (2023). Electrochemical reduction of carbon dioxide to acetic acid on a Cu-Au modified boron-doped diamond electrode with a flow-cell system. RSC Advances, 13(32), 22061–22069. https://doi.org/10.1039/d3ra03836j

Sen, S., Liu, D., & Palmore, G. T. R. (2014). Electrochemical reduction of CO2 at copper nanofoams. ACS Catalysis, 4(9). https://doi.org/10.1021/cs500522g

Slupska, M., & Ozga, P. (2014). Electrodeposition of Sn-Zn-Cu alloys from citrate solutions. Electrochimica Acta, 141, 149–160. https://doi.org/10.1016/j.electacta.2014.07.039

Song, C. (2002). CO2 Conversion and Utilization: An Overview. ACS Symposium Series, 809, 1–30. https://doi.org/10.1021/bk-2002-0809.ch001

Sudha, V., Murugadoss, G., & Thangamuthu, R. (2021). Structural and morphological tuning of Cu-based metal oxide nanoparticles by a facile chemical method and highly electrochemical sensing of sulphite. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-82741-z

Sun, Z., Ma, T., Tao, H., Fan, Q., & Han, B. (2017). Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials. Chem, 3(4), 560–587. https://doi.org/10.1016/j.chempr.2017.09.009

Syauqi, M. I., Khalil, M., Syauqi, M. I., Sanjaya, A. R., & Madiabu, M. J. (2023). TiO2 Crystallization at Room Temperature and Preparation of Transparent Carbon Counter Electrode for Low-Cost Dye- Sensitized Solar Cells. 27(2). https://doi.org/10.7454/mss.v27i2.1476

Wang, Y., Zhou, J., Lv, W., Fang, H., & Wang, W. (2016). Electrochemical reduction of CO2 to formate catalyzed by electroplated tin coating on copper foam. Applied Surface Science, 362, 394–398. https://doi.org/10.1016/j.apsusc.2015.11.255

Weekes, D. M., Salvatore, D. A., Reyes, A., Huang, A., & Berlinguette, C. P. (2018). Electrolytic CO2 Reduction in a Flow Cell. Accounts of Chemical Research, 51(4), 910–918. https://doi.org/10.1021/acs.accounts.8b00010

Yang, D., Yu, H., He, T., Zuo, S., Liu, X., Yang, H., Ni, B., Li, H., Gu, L., Wang, D., & Wang, X. (2019). Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective electroreduction of carbon dioxide. Nature Communications, 10(1), 1–10. https://doi.org/10.1038/s41467-019-11817-2

Yang, D., Zhu, Q., & Han, B. (2020). Electroreduction of CO2 in Ionic Liquid-Based Electrolytes. Innovation, 1(1), 100016. https://doi.org/10.1016/j.xinn.2020.100016

Yue, Y., Zou, X., Shi, Y., Cai, J., Xiang, Y., Li, Z., & Lin, S. (2023). A low crystallinity CuO-SnO2/C catalyst for efficient electrocatalytic reduction of CO2. Journal of Electroanalytical Chemistry, 928(December 2022). https://doi.org/10.1016/j.jelechem.2022.117089

Zahran Ilyasa, S., Krisma Jiwanti, P., Khalil, M., Einaga, Y., & Anggraningrum Ivandini, T. (2020). Study of carbon dioxide electrochemical reduction in flow cell system using copper modified boron-doped diamond. E3S Web of Conferences, 211, 1–8. https://doi.org/10.1051/e3sconf/202021103011

Zeng, J., Bejtka, K., Ju, W., Castellino, M., Chiodoni, A., Sacco, A., Farkhondehfal, M. A., Hernández, S., Rentsch, D., Battaglia, C., & Pirri, C. F. (2018). Advanced Cu-Sn foam for selectively converting CO2 to CO in aqueous solution. Applied Catalysis B: Environmental, 236(May), 475–482. https://doi.org/10.1016/j.apcatb.2018.05.056

Zoli, M., Roldán, D., Guzmán, H., Castellino, M., Chiodoni, A., Bejtka, K., Russo, N., & Hernández, S. (2023). Facile and scalable synthesis of Cu2O-SnO2 catalyst for the photoelectrochemical CO2 conversion. Catalysis Today, 413–415, 113985. https://doi.org/10.1016/j.cattod.2022.12.016

Downloads

Published

2023-12-31

How to Cite

Syauqi, M. I., Cahyani, A. T., Putri, Y. M. T. A., & Jiwanti, P. K. (2023). Electroreduction of carbon dioxide (CO2) with flow cell system using tin-modified copper foam electrode. Environmental and Materials, 1(2). https://doi.org/10.61511/eam.v1i2.2023.363

Issue

Section

Articles

Citation Check