An acetylcholinesterase-based biosensor of carbofuran using carbon foam electrode modified by graphene and gold particles
DOI:
https://doi.org/10.61511/eam.v3i1.2025.1963Keywords:
acetylcholinesterase, Au, carbofuran, carbon foam, grapheneAbstract
Background: This study introduces a novel acetylcholinesterase (AChE)-based biosensor for the sensitive and selective detection of carbofuran, a widely used carbamate pesticide known for its neurotoxicity. Methods: The biosensor employs a carbon foam (CF) electrode modified with graphene oxide and gold nanoparticles (CF/Graphene/Au), leveraging the synergistic properties of these materials to enhance electrochemical performance. Carbofuran detection is achieved through its inhibitory effect on AChE activity, monitored via cyclic voltammetry of thiocholine oxidation. Findings: Under optimal conditions at pH 7.4, the biosensor demonstrated a linear detection range of 25–125 μM, a detection limit of 8.08 μM, and a sensitivity of 0.3874 mA μM⁻¹ cm⁻². It also showed strong reproducibility with a relative standard deviation of 6.77%. When tested on real vegetable samples, the biosensor achieved recovery rates between 88.95% and 111.30%. Conclusion: Compared to existing biosensor technologies, the CF/Graphene/Au-based sensor offers a well-balanced performance in terms of sensitivity, detection range, and practical usability. It presents a viable and portable solution for monitoring pesticide residues in environmental samples. Novelty/Originality of this article: This work presents a promising, portable solution for environmental monitoring of pesticide residues, integrating advanced nanomaterials and computational validation to improve detection accuracy and reliability.
References
Akyüz, D., & Koca, A. (2019). An electrochemical sensor for the detection of pesticides based on the hybrid of manganese phthalocyanine and polyaniline. Sensors and Actuators B: Chemical, 283, 848-856. https://doi.org/10.1016/J.SNB.2018.11.155
Anggraini, L. E., Rahmawati, I., Nasution, M. A. F., Jiwanti, P. K., Einaga, Y., & Ivandini, T. A. (2023). Development of an acrylamide biosensor using guanine and adenine as biomarkers at boron-doped diamond electrodes: Integrated molecular docking and experimental studies. Bulletin of the Chemical Society of Japan, 96(5), 420-428. https://doi.org/10.1246/bcsj.20230030
Baek, S. H., Roh, J., Park, C. Y., Kim, M. W., Shi, R., Kailasa, S. K., & Park, T. J. (2020). Cu-nanoflower decorated gold nanoparticles-graphene oxide nanofiber as electrochemical biosensor for glucose detection. Materials Science and Engineering: C, 107, 110273. https://doi.org/10.1016/j.msec.2019.110273
Bhuvanagayathri, R., Daniel, D. K., & Nirmala, G. (2020). Kinetic Evaluation of the Inhibition of Acetylcholinesterase for Use as a Biosensor. ASEAN Journal of Chemical Engineering, 20(1), 99-108. https://doi.org/10.22146/ajche.56709
Buglione, L., Chng, E. L. K., Ambrosi, A., Sofer, Z., & Pumera, M. (2012). Graphene materials preparation methods have dramatic influence upon their capacitance. Electrochemistry Communications, 14(1), 5-8. https://doi.org/10.1016/j.elecom.2011.09.013
Cai, J., & Du, D. (2008). A disposable sensor based on immobilization of acetylcholinesterase to multiwall carbon nanotube modified screen-printed electrode for determination of carbaryl. Journal of Applied Electrochemistry, 38, 1217-1222. https://doi.org/10.1007/s10800-008-9540-4
Cui, H. F., Wu, W. W., Li, M. M., Song, X., Lv, Y., & Zhang, T. T. (2018). A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides. Biosensors and Bioelectronics, 99, 223-229. https://doi.org/10.1016/j.bios.2017.07.068
Dhull, V., Gahlaut, A., Dilbaghi, N., & Hooda, V. (2013). Acetylcholinesterase biosensors for electrochemical detection of organophosphorus compounds: a review. Biochemistry research international, 2013(1), 731501. https://doi.org/10.1155/2013/731501
Díaz, A. N., & Peinado, M. R. (1997). Sol-gel cholinesterase biosensor for organophosphorus pesticide fluorimetric analysis. Sensors and Actuators B: Chemical, 39(1-3), 426-431. https://doi.org/10.1016/s0925-4005(97)00025-7
Dong, P., Jiang, B., & Zheng, J. (2019). A novel acetylcholinesterase biosensor based on gold nanoparticles obtained by electroless plating on three-dimensional graphene for detecting organophosphorus pesticides in water and vegetable samples. Analytical Methods, 11(18), 2428-2434. https://doi.org/10.1039/c9ay00549h
Eprilia, N., Sanjaya, A. R., Pramadewandaru, R. K., Pertiwi, T. A., Putri, Y. M., Rahmawati, I., ... & Ivandini, T. A. (2024). Preparation of nickel foam modified by multiwalled hollow spheres of NiCo2O4 as a promising non-enzymatic glucose sensor. RSC advances, 14(15), 10768-10775. https://doi.org/10.1039/d3ra08663a
Fatah, F. R., Sitorus, R., Saefumillah, A., Mubarok, H., & Pramadewandaru, R. K. (2024). Advanced electrochemical detection of arsenic using platinum-modified boron-doped diamond by anodic stripping voltammetry. Environmental and Materials, 2(1), 61-76. https://doi.org/10.61511/eam.v2i1.2024.993
Fukuto, T. R. (1990). Mechanism of action of organophosphorus and carbamate insecticides. Environmental health perspectives, 87, 245-254. https://doi.org/10.1289/ehp.9087245
Ivandini, T. A., Saepudin, E., Wardah, H., Harmesa, Dewangga, N., & Einaga, Y. (2012). Development of a biochemical oxygen demand sensor using gold-modified boron doped diamond electrodes. Analytical chemistry, 84(22), 9825-9832. https://doi.org/10.1021/ac302090y
Jirasirichote, A., Punrat, E., Suea-Ngam, A., Chailapakul, O., & Chuanuwatanakul, S. (2017). Voltammetric detection of carbofuran determination using screen-printed carbon electrodes modified with gold nanoparticles and graphene oxide. Talanta, 175, 331-337. https://doi.org/10.1016/j.talanta.2017.07.050
Khalil, I., Julkapli, N. M., Yehye, W. A., Basirun, W. J., & Bhargava, S. K. (2016). Graphene–gold nanoparticles hybrid—synthesis, functionalization, and application in a electrochemical and surface-enhanced raman scattering biosensor. Materials, 9(6), 406. https://doi.org/10.3390/ma9060406
Khodadadi, A., Faghih-Mirzaei, E., Karimi-Maleh, H., Abbaspourrad, A., Agarwal, S., & Gupta, V. K. (2019). A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations. Sensors and actuators b: chemical, 284, 568-574. https://doi.org/10.1016/j.snb.2018.12.164
Ma, C. B., Qi, X., Chen, B., Bao, S., Yin, Z., Wu, X. J., ... & Zhang, H. (2014). MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction. Nanoscale, 6(11), 5624-5629. https://doi.org/10.1039/c3nr04975b
Ma, L., Zheng, M., Liu, S., Li, Q., You, Y., Wang, F., ... & Shen, W. (2016). Synchronous exfoliation and assembly of graphene on 3D Ni(OH)2 for supercapacitors. Chemical Communications, 52(91), 13373-13376. https://doi.org/10.1039/c6cc07645a
Ma, Y., Song, X., Ge, X., Zhang, H., Wang, G., Zhang, Y., & Zhao, H. (2017). In situ growth of α-Fe2O3 nanorod arrays on 3D carbon foam as an efficient binder-free electrode for highly sensitive and specific determination of nitrite. Journal of materials chemistry A, 5(9), 4726-4736. https://doi.org/10.1039/c6ta10744c
Massoulie, J., & Bon, S. (1982). The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annual review of neuroscience, 5(1), 57-106. https://doi.org/10.1146/annurev.ne.05.030182.000421
Nahda, D. P., Sanjaya, A. R., Rahmawati, F., Zulfia, A., Sumbodja, A., Pramadewandaru, R. K., ... & Ivandini, T. A. (2025). Synthesis of mesoporous carbon from banana peels with silica gel 60 as the hard templates. RSC advances, 15(6), 4536-4545. https://doi.org/10.1039/d4ra08322a
Nunes, E. W., Silva, M. K., Rascón, J., Leiva-Tafur, D., Lapa, R. M., & Cesarino, I. (2022). Acetylcholinesterase biosensor based on functionalized renewable carbon platform for detection of carbaryl in food. Biosensors, 12(7), 486. https://doi.org/10.3390/bios12070486
Olkhov, R. V., & Shaw, A. M. (2014). Growth kinetics of gold nanoparticles on silica/graphene surfaces for multiplex biological immunoassays. RSC Advances, 4(60), 31678-31684. https://doi.org/10.1039/c4ra02326a
Ostadakbari, F., Yazdian, F., Rashedi, H., Ghaemi, A., Haghirosadat, B. F., & Azizi, M. (2021). Fabrication of a Sensitive Biosensing System for Cu2+ ion Detection by Gold-Decorated Graphene Oxide Functionalized with Gly-Gly-His. Journal of Cluster Science, 33(6), 2617–2624. https://doi.org/10.1007/s10876-021-02169-3
Pino, F., Ivandini, T. A., Nakata, K., Fujishima, A., Merkoçi, A., & Einaga, Y. (2015). Magnetic enzymatic platform for organophosphate pesticide detection using boron-doped diamond electrodes. analytical sciences, 31(10), 1061-1068. https://doi.org/10.2116/analsci.31.1061
Prasad, R., Upadhyay, N., & Kumar, V. (2013). Simultaneous determination of seven carbamate pesticide residues in gram, wheat, lentil, soybean, fenugreek leaves and apple matrices. Microchemical Journal, 111, 91–96. https://doi.org/10.1016/j.microc.2012.12.014
Pundir, C. S., & Chauhan, N. (2012). Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Analytical biochemistry, 429(1), 19-31. https://doi.org/10.1016/j.ab.2012.06.025
Rachmawati, A., Sanjaya, A. R., Putri, Y. M. T. A., Gunlazuardi, J., & Ivandini, T. A. (2023). An acetylcholinesterase-based biosensor for isoprocarb using a gold nanoparticles-polyaniline modified graphite pencil electrode. Analytical Sciences, 39(6), 911-923. https://doi.org/10.1007/S44211-023-00296-7/TABLES/4
Rahmawati, I., Einaga, Y., Ivandini, T. A., & Fiorani, A. (2022). Enzymatic biosensors with electrochemiluminescence transduction. ChemElectroChem, 9(12), e202200175. https://doi.org/10.1002/celc.202200175
Ribeiro, E. B., Ribeiro, D. B., dos Santos Soares, A. M., Marques, P. R. B., Badea, M., Targa, M., ... & Nunes, G. S. (2022). A novel glutathione-S-transferase-based biosensor for pyrethroid insecticides: From inhibition study to detection. Sensors and Actuators Reports, 4, 100093. https://doi.org/10.1016/j.snr.2022.100093
Sanjaya, A. R., Riyanto, H. G., Rahmawati, I., Putri, Y. M. T. A., Nurhalimah, D., Saepudin, E., ... & Krisnandi, Y. K. (2023). Carbon-coated nickel foam for hypochlorous acid sensor. Environmental and Materials, 1(1). https://doi.org/10.61511/eam.v1i1.2023.105
Singh, A. P., Balayan, S., Hooda, V., Sarin, R. K., & Chauhan, N. (2020). Nano-interface driven electrochemical sensor for pesticides detection based on the acetylcholinesterase enzyme inhibition. International Journal of Biological Macromolecules, 164, 3943-3952. https://doi.org/10.1016/j.ijbiomac.2020.08.215
Sookhakian, M., Mat Teridi, M. A., Tong, G. B., Woi, P. M., Khalil, M., & Alias, Y. (2021). Reduced graphene oxide/copper nanoparticle composites as electrochemical sensor materials for nitrate detection. ACS Applied Nano Materials, 4(11), 12737-12744. https://doi.org/10.1021/acsanm.1c03351
Upadhyay, S., Rao, G. R., Sharma, M. K., Bhattacharya, B. K., Rao, V. K., & Vijayaraghavan, R. (2009). Immobilization of acetylcholineesterase–choline oxidase on a gold–platinum bimetallic nanoparticles modified glassy carbon electrode for the sensitive detection of organophosphate pesticides, carbamates and nerve agents. Biosensors and Bioelectronics, 25(4), 832-838. https://doi.org/10.1016/j.bios.2009.08.036
Wang, K., Liu, Q., Dai, L., Yan, J., Ju, C., Qiu, B., & Wu, X. (2011). A highly sensitive and rapid organophosphate biosensor based on enhancement of CdS–decorated graphene nanocomposite. Analytica Chimica Acta, 695(1-2), 84-88. https://doi.org/10.1016/j.aca.2011.03.042
Wang, M., Huang, J., Wang, M., Zhang, D., & Chen, J. (2014). Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables. Food chemistry, 151, 191-197. https://doi.org/10.1016/j.foodchem.2013.11.046
Wei, M., Zeng, G., & Lu, Q. (2014). Determination of organophosphate pesticides using an acetylcholinesterase-based biosensor based on a boron-doped diamond electrode modified with gold nanoparticles and carbon spheres. Microchimica Acta, 181, 121-127. https://doi.org/10.1007/s00604-013-1078-4
Yao, Y., Wang, G., Chu, G., An, X., Guo, Y., & Sun, X. (2019). The development of a novel biosensor based on gold nanocages/graphene oxide–chitosan modified acetylcholinesterase for organophosphorus pesticide detection. New Journal of Chemistry, 43(35), 13816-13826. https://doi.org/10.1039/c9nj02556a
Zahirifar, F., Rahimnejad, M., Abdulkareem, R. A., & Najafpour, G. (2019). Determination of Diazinon in fruit samples using electrochemical sensor based on carbon nanotubes modified carbon paste electrode. Biocatalysis and Agricultural Biotechnology, 20, 101245. https://doi.org/10.1016/j.bcab.2019.101245
Zhang, J., & Lee, H. K. (2006). Application of liquid-phase microextraction and on-column derivatization combined with gas chromatography–mass spectrometry to the determination of carbamate pesticides. Journal of Chromatography A, 1117(1), 31-37. https://doi.org/10.1016/j.chroma.2006.03.102
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Respati Kevin Pramadewandaru, Sulis Triani, Yudhistira Tesla, Afiten Rahmin Sanjaya

This work is licensed under a Creative Commons Attribution 4.0 International License.