A review of TiO2 nanotubes/Co3O4/M (M: Au, Ag) photoelectrode for degradation of methyl orange and methylene blue

Authors

  • Nurafni Setiawati Department of Chemistry, Faculty of Mathematics and Science, Universitas Indonesia, Depok, West Java 16424, Indonesia
  • Wari Tinting Hastuti Department of Chemistry, Faculty of Mathematics and Science, Universitas Indonesia, Depok, West Java 16424, Indonesia

DOI:

https://doi.org/10.61511/eam.v3i1.2025.1848

Keywords:

organic pollutants, methyl orange, methylene blue, dye degradation

Abstract

Background: Wastewater containing dyes occurs due to the discharge of wastewater into rivers without undergoing proper treatment procedures as it should. This waste generally comes from the textile industry. Wastewater containing dyes increases the concentration of organic pollutants in wastewater, which can cause water pollution. Textile dyes are generally made from compounds containing aromatic rings, such as methyl orange and methylene blue. Methyl orange and methylene blue are organic pollutants that cannot be biologically degraded because they contain aromatic rings that are difficult to break down, thus posing a risk of environmental pollution and disrupting aquatic ecosystems. Several conventional wastewater treatment methods for dye degradation, such as coagulation, flotation, sedimentation, and filtration, have been applied, but these methods still have limitations. Methods: This review examines recent progress in the development of TiO₂ nanotube-based photoelectrodes modified with Co₃O₄ and noble metals (Ag, Au) for the degradation of methyl orange and methylene blue from wastewater. The use of electrochemical methods has advantages over conventional methods, namely more efficient, environmentally friendly, and flexible for the degradation of dyes in wastewater. The synthesis techniques used are anodization, impregnation-deposition-decomposition, and photodeposition methods. Findings: The development of TiO₂/Co₃O₄/Ag and TiO₂/Co₃O₄/Au nanotube-based photoelectrodes shows better performance in the degradation of organic dyes compared to unmodified TiO₂ photoelectrodes, as they can improve photocatalytic efficiency by expanding visible light absorption and increasing surface reactivity. Conclusion: The use of TiO₂/Co₃O₄/Ag and TiO₂/Co₃O₄/Au materials has great potential as an environmentally friendly and efficient solution in addressing pollution from persistent textile dye wastewater. The implementation of this technology in industrial wastewater treatment systems promotes advances in the fields of photocatalysis and renewable energy. Novelty/Originality of this article: This review is the first to evaluate TiO₂ nanotube/Co₃O₄ photoelectrodes modified with Ag and Au for the degradation of methyl orange and methylene blue.

References

Al Jitan, S., Palmisano, G., & Garlisi, C. (2020). Synthesis and Surface Modification of TiO2-Based Photocatalysts for the Conversion of CO2. Catalysts, 10(2), 227. https://doi.org/10.3390/catal10020227

Angelini, E., Grassini, S., & Tusa, S. (2013). Underwater corrosion of metallic heritage artefacts. In Corrosion and Conservation of Cultural Heritage Metallic Artefacts (pp. 236–259). Elsevier Ltd. https://doi.org/10.1533/9781782421573.3.236

BBSPJI Tekstil. (2024). Industri Tekstil, Pakaian Jadi, dan Alas Kaki Makin Ekspansif di Triwulan Pertama 2024 (p. 1). BBSPJI Tekstil.

Bhardwaj, S., & Pal, B. (2018). Photodeposition of Ag and Cu binary co-catalyst onto TiO2 for improved optical and photocatalytic degradation properties. Advanced Powder Technology, 29(9), 2119–2128. https://doi.org/10.1016/j.apt.2018.05.020

Carabineiro, S. A. C., Machado, B. F., Dražić, G., Bacsa, R. R., Serp, P., Figueiredo, J. L., & Faria, J. L. (2010). Photodeposition of Au and Pt on ZnO and TiO2. Studies in Surface Science and Catalysis, 175, 629–633. https://doi.org/10.1016/S0167-2991(10)75124-7

Celebi, N., Aydin, M. Y., Soysal, F., Ciftci, Y. O., & Salimi, K. (2021). Ligand-free fabrication of Au/TiO2 nanostructures for plasmonic hot-electron-driven photocatalysis: Photoelectrochemical water splitting and organic-dye degredation. Journal of Alloys and Compounds, 860. https://doi.org/10.1016/j.jallcom.2020.157908

Chen, Y. W., Chen, H. J., & Lee, D. S. (2012). Au/Co3O4-TiO2 catalysts for preferential oxidation of CO in H2 stream. Journal of Molecular Catalysis A: Chemical, 363–364, 470–480. https://doi.org/10.1016/j.molcata.2012.07.027

Cheng, Y., Gao, J., Shi, Q., Li, Z., & Huang, W. (2022). In situ electrochemical reduced Au loaded black TiO2 nanotubes for visible light photocatalysis. Journal of Alloys and Compounds, 901. https://doi.org/10.1016/j.jallcom.2021.163562

Cristina P, M., S, M. nisatun, & Saptaaji, R. (2007). STUDI PENDAHULUAN MENGENAI DEGRADASI ZAT WARNA AZO (METIL ORANGE) DALAM PELARUT AIR MENGGUNAKAN MESIN BERKAS ELEKTRON 350 keV/10 mA. Jurnal Forum Nuklir, 1(1), 31. https://doi.org/10.17146/jfn.2007.1.1.3271

Dai, G., Liu, S., Liang, Y., & Luo, T. (2013). Synthesis and enhanced photoelectrocatalytic activity of p-n junction Co 3 O 4 /TiO 2 nanotube arrays. Applied Surface Science, 264, 157–161. https://doi.org/10.1016/j.apsusc.2012.09.160

Di, Y., Liu, L., Wang, X., Ma, H., Dong, X., Zhang, X., & Fu, Y. (2020). The Enhanced Photoelectrocatalytic Activity of Ti/Co3O4 Nanowires by the Photodeposition of Ag for the Decolorization of Dyeing Wastewater. International Journal of Electrochemical Science, 15, 12610–12621. https://doi.org/10.20964/2020.12.58

Du, K., Liu, G., Chen, X., & Wang, K. (2018). Fast charge separation and photocurrent enhancement on black TiO2 nanotubes co-sensitized with Au nanoparticles and PbS quantum dots. Electrochimica Acta, 277, 244–254. https://doi.org/10.1016/j.electacta.2018.05.014

Frasnawati, E., Aritonang, A. B., & Syahbanu, I. (2019). Sintesis dan Karakterisasi TiO2/Ti Nanotube Menggunakan Metode Anodisasi. Jurnal Kimia Khatulistiwa, 8(2), 9–14.

Fu, C., Li, M., Li, H., Li, C., Wu, X. guo, & Yang, B. (2017). Fabrication of Au nanoparticle/TiO2hybrid films for photoelectrocatalytic degradation of methyl orange. Journal of Alloys and Compounds, 692, 727–733. https://doi.org/10.1016/j.jallcom.2016.09.119

Hu, L., Peng, Q., & Li, Y. (2008). Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion. Journal of the American Chemical Society, 130(48), 16136–16137. https://doi.org/10.1021/ja806400e

Ion, R. M., Scarlat, F., Scarlat, F., & Niculescu, V. I. R. (2003). Methylene - Blue modified polypyrrole film electrode for optoelectronic applications. Journal of Optoelectronics and Advanced Materials, 5(1), 109–115.

Ishii, F., & Kita, Y. (2000). Applications of Fluorides to Semiconductor Industries. In Advanced Inorganic Fluorides (pp. 625–660). Elsevier. https://doi.org/10.1016/B978-044472002-3/50020-X

Jamshidi, E., & Manteghi, F. (2020). Methyl Orange Adsorption by Fe2O3@Co-Al-Layered Double Hydroxide. 2(Ii), 64. https://doi.org/10.3390/ecsoc-23-06617

Kaur, J., & Singhal, S. (2014). Facile synthesis of ZnO and transition metal doped ZnO nanoparticles for the photocatalytic degradation of Methyl Orange. Ceramics International, 40(5), 7417–7424. https://doi.org/10.1016/j.ceramint.2013.12.088

Lee, Y., Kim, E., Park, Y., Kim, J., Ryu, W. H., Rho, J., & Kim, K. (2018). Photodeposited metal-semiconductor nanocomposites and their applications. Journal of Materiomics, 4(2), 83–94. https://doi.org/10.1016/j.jmat.2018.01.004

Li, H., Wang, G., Niu, J., Wang, E., Niu, G., & Xie, C. (2019). Preparation of TiO2 nanotube arrays with efficient photocatalytic performance and super-hydrophilic properties utilizing anodized voltage method. Results in Physics, 14, 102499. https://doi.org/10.1016/j.rinp.2019.102499

Li, X., Wang, X., Ning, J., Wei, H., & Hao, L. (2023). Novel Impregnation−Deposition Method to Synthesize a Presulfided MoS2/Al2O3 Catalyst and Its Application in Hydrodesulfurization. ACS Omega, 8(2), 2596–2606. https://doi.org/10.1021/ACSOMEGA.2C07123

Li, Z., Ding, Y., Kang, W., Li, C., Lin, D., Wang, X., Chen, Z., Wu, M., & Pan, D. (2015). Reduction Mechanism and Capacitive Properties of Highly Electrochemically Reduced TiO2 Nanotube Arrays. Electrochimica Acta, 161, 40–47. https://doi.org/10.1016/j.electacta.2014.12.132

Liang, Q., Chen, J., Wang, F., & Li, Y. (2020). Transition metal-based metal-organic frameworks for oxygen evolution reaction. In Coordination Chemistry Reviews (Vol. 424). Elsevier B.V. https://doi.org/10.1016/j.ccr.2020.213488

Malato, S., Blanco, J., Campos, A., Cáceres, J., Guillard, C., Herrmann, J. M., & Fernández-Alba, A. R. (2003). Effect of operating parameters on the testing of new industrial titania catalysts at solar pilot plant scale. Applied Catalysis B: Environmental, 42(4), 349–357. https://doi.org/10.1016/S0926-3373(02)00270-9

Mansha, M. S., Iqbal, T., Farooq, M., Riaz, K. N., Afsheen, S., Sultan, M. S., Al-Zaqri, N., Warad, I., & Masood, A. (2023). Facile hydrothermal synthesis of BiVO4 nanomaterials for degradation of industrial waste. Heliyon, 9(5). https://doi.org/10.1016/j.heliyon.2023.e15978

Mohammadi, R., Massoumi, B., Emamalinasabb, B., & Eskandarloo, H. (2017). Cu-doped TiO2-graphene/alginate nanocomposite for adsorption and photocatalytic degradation of methylene blue from aqueous solutions. Desalination and Water Treatment, 82, 81–91. https://doi.org/10.5004/dwt.2017.20946

Munnik, P., De Jongh, P. E., & De Jong, K. P. (2015). Recent Developments in the Synthesis of Supported Catalysts. In Chemical Reviews (Vol. 115, Issue 14, pp. 6687–6718). American Chemical Society. https://doi.org/10.1021/cr500486u

Nyathi, T. M., Fadlalla, M. I., Fischer, N., York, A. P. E., Olivier, E. J., Gibson, E. K., Wells, P. P., & Claeys, M. (2023). Co3O4/TiO2 catalysts studied in situ during the preferential oxidation of carbon monoxide: the effect of different TiO2 polymorphs. Catalysis Science and Technology, 13(7), 2038–2052. https://doi.org/10.1039/d2cy01699k

Odling, G., & Robertson, N. (2016). BiVO4-TiO2 Composite Photocatalysts for Dye Degradation Formed Using the SILAR Method. ChemPhysChem, 2872–2880. https://doi.org/10.1002/cphc.201600443

Permana, E., Cristine, I., Sumbogo Murti, S. D., & Yanti, F. M. (2020). PREPARASI DAN KARAKTERISASI KATALIS Cu/ZnO DENGAN SUPPORT KARBON AKTIF MENGGUNAKAN AKTIVATOR H3PO4 DAN ZnCl2.

Qiu, F., Wang, L., Li, H., Pan, Y., Song, H., Chen, J., Fan, Y., & Zhang, S. (2024). Electrochemically enhanced activation of Co3O4/TiO2 nanotube array anode for persulfate toward high catalytic activity, low energy consumption, and long lifespan performance. Journal of Colloid and Interface Science, 655, 594–610. https://doi.org/10.1016/j.jcis.2023.11.045

Riaz, N., Chong, F. K., Dutta, B. K., Man, Z. B., Khan, M. S., & Nurlaela, E. (2012). Photodegradation of Orange II under visible light using Cu-Ni/TiO 2: Effect of calcination temperature. Chemical Engineering Journal, 185–186, 108–119. https://doi.org/10.1016/j.cej.2012.01.052

Rufina R, D. J., & Thangavelu, P. (2023). Plasmon induced green synthesized nano silver doped titania nanotubes array for photoelectrochemical (PEC) application. Optical Materials, 138. https://doi.org/10.1016/j.optmat.2023.113678

Setianingrum, N. P., Prasetya, A., & Sarto, S. (2018). Pengurangan Zat Warna Remazol Red Rb Menggunakan Metode Elektrokoagulasi Secara Batch. Jurnal Rekayasa Proses, 11(2), 78. https://doi.org/10.22146/jrekpros.26900

Sha, Y., Mathew, I., Cui, Q., Clay, M., Gao, F., Zhang, X. J., & Gu, Z. (2016). Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles. Chemosphere, 144, 1530–1535. https://doi.org/10.1016/j.chemosphere.2015.10.040

Sheng, T., Jiang, Y.-X., Tian, N., Zhou, Z.-Y., & Sun, S.-G. (2017). Nanocrystal Catalysts of High-Energy Surface and Activity (pp. 439–475). https://doi.org/10.1016/B978-0-12-805090-3.00012-7

Surahman, H. (2017). Pengembangan Sel Fotoelektrokimia Menggunakan Elektroda TiO2 Nanotube Arrays Tersensitasi CdS Nanopartikel Untuk Produksi Hidrogen. In Disertasi.

Tayebi, M., Tayyebi, A., Lee, B. K., Lee, C. H., & Lim, D. H. (2019). The effect of silver doping on photoelectrochemical (PEC) properties of bismuth vanadate for hydrogen production. Solar Energy Materials and Solar Cells, 200. https://doi.org/10.1016/j.solmat.2019.109943

Testbook. (2023). Methylene Blue: Learn properties, side effects and applications.

Tong, R., Wang, X., Zhou, X., Liu, Q., Wang, H., Peng, X., Liu, X., Zhang, Z., Wang, H., & Lund, P. D. (2017). Cobalt-Phosphate modified TiO2/BiVO4 nanoarrays photoanode for efficient water splitting. International Journal of Hydrogen Energy, 42(8), 5496–5504. https://doi.org/10.1016/j.ijhydene.2016.08.168

Umukoro, E. H., Peleyeju, M. G., Ngila, J. C., & Arotiba, O. A. (2016). Photoelectrochemical degradation of orange II dye in wastewater at a silver-zinc oxide/reduced graphene oxide nanocomposite photoanode. RSC Advances, 6(58), 52868–52877. https://doi.org/10.1039/c6ra04156f

Valica, M., & Hostin, S. (2016). Electrochemical treatment of water contaminated with methylorange. Nova Biotechnologica et Chimica, 15(1), 55–64. https://doi.org/10.1515/nbec-2016-0006

Veziroglu, S., Obermann, A. L., Ullrich, M., Hussain, M., Kamp, M., Kienle, L., Leißner, T., Rubahn, H. G., Polonskyi, O., Strunskus, T., Fiutowski, J., Es-Souni, M., Adam, J., Faupel, F., & Aktas, O. C. (2020). Photodeposition of Au Nanoclusters for Enhanced Photocatalytic Dye Degradation over TiO2 Thin Film. ACS Applied Materials and Interfaces, 12(13), 14983–14992. https://doi.org/10.1021/acsami.9b18817

Vita Mey Destty Marbun, N., & Evencus Hutajulu, P. (2023). JURNAL REKAYASA, TEKNOLOGI PROSES DAN SAINS KIMIA Evaluasi Kuantitas Dan Kualitas Produk Katalis Heterogen Hasil Pemanfaatan Tandan Kosong Kelapa Sawit Melalui Impregnasi Logam Transisi.

Wang, J., Yu, N., Zhang, Y., Zhu, Y., Fu, L., Zhang, P., Gao, L., & Wu, Y. (2016). Synthesis and performance of Cu2ZnSnS4semiconductor as photocathode for solar water splitting. In Journal of Alloys and Compounds (Vol. 688, pp. 923–932). Elsevier Ltd. https://doi.org/10.1016/j.jallcom.2016.07.012

Wang, L., Han, J., Feng, J., Wang, X., Su, D., Hou, X., Hou, J., Liang, J., & Dou, S. X. (2019). Simultaneously efficient light absorption and charge transport of CdS/TiO2 nanotube array toward improved photoelectrochemical performance. International Journal of Hydrogen Energy, 44(59), 30899–30909. https://doi.org/10.1016/j.ijhydene.2019.10.043

Wu, L., Liu, X., Lv, G., Zhu, R., Tian, L., Liu, M., Li, Y., Rao, W., Liu, T., & Liao, L. (2021). Study on the adsorption properties of methyl orange by natural one-dimensional nano-mineral materials with different structures. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-90235-1

Xu, X., Zhang, W., Li, Y., Wang, P., & Zhang, Y. (2022). Synthesis of Co3O4@TiO2 catalysts for oxygen evolution and oxygen reduction reactions. Microporous and Mesoporous Materials, 335. https://doi.org/10.1016/j.micromeso.2022.111844

Zhang, Y., Nie, J., Wang, Q., Zhang, X., Wang, Q., & Cong, Y. (2018). Synthesis of Co 3 O 4 /Ag/TiO 2 nanotubes arrays via photo-deposition of Ag and modification of Co 3 O 4 (311) for enhancement of visible-light photoelectrochemical performance. Applied Surface Science, 427, 1009–1018. https://doi.org/10.1016/j.apsusc.2017.09.008

Zou, D., Xu, C., Luo, H., Wang, L., & Ying, T. (2008). Synthesis of Co3O4 nanoparticles via an ionic liquid-assisted methodology at room temperature. Materials Letters, 62(12–13), 1976–1978. https://doi.org/10.1016/j.matlet.2007.10.056

Published

2025-06-30

How to Cite

Setiawati, N., & Hastuti, W. T. (2025). A review of TiO2 nanotubes/Co3O4/M (M: Au, Ag) photoelectrode for degradation of methyl orange and methylene blue. Environmental and Materials, 3(1). https://doi.org/10.61511/eam.v3i1.2025.1848

Issue

Section

Articles

Citation Check