Preliminary study of screen–printed gold electrode for H2O2 sensor based on electrochemiluminescence of luminol

Authors

  • Junjunan Muhammad Syukur Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia
  • Afiten Rahmin Sanjaya Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia https://orcid.org/0000-0001-6834-4588
  • Isnaini Rahmawati Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia https://orcid.org/0000-0003-1327-592X
  • Muhammad Ridwan Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia https://orcid.org/0000-0002-0201-2684

DOI:

https://doi.org/10.61511/eam.v3i1.2025.1656

Keywords:

electrochemiluminescence, gold, hydrogen peroxide

Abstract

Background: Hydrogen peroxide (H2O2) is mostly used in the water and dairy industries for sterilization and preservation purposes. However, excessive H2O2 residues in milk and tap water pose a health risk. Therefore, accurate measurement of H2O2 residue is essential.  Methods: This study explores the potential of a screen–printed gold electrode (SPGE) as a sensor for H2O2 sensor using the electrogenerated chemiluminescence (ECL) method of luminol in the electrolyte of phosphate buffer solution (PBS) under alkaline condition (pH of 9). Findings: The detection of H2O2 was achieved a linear calibration equation of y = 0.0215[H2O2] + 0.2006 within a concentration range of 0.5 to 200 µM (R2 = 0.9998), demonstrating reliable ECL measurements.  Conclusion: The analytical performance evaluation of H2O2 sensor exhibited a low limit of detection (LOD) of 3.06 µM, a limit of quantification (LOQ) of 10.20 µM, and good measurement repeatability, with a relative standard deviation (%RSD) of 6.03%, which is below ⅔ of the Horwitz coefficient of variation (9.85%). Unmodified SPGE offers simplicity, ease of use, a stable surface, and good conductivity while maintaining excellent performance. Novelty/Originality of this article: The application of the ECL method on SPGE for H2O2 detection offers excellent analytical performance, making it a promising approach for monitoring H2O2 residues in the water and dairy industries, with a recovery from 83.83 to 106.01%.

References

Annisa, F., Handoko, D., Darojatin, A., Puspita, A. S., Dewi, F. Y., Prajitno, P., Fajari, M. H., Aliwarga, H. K., & Ivandini, T. A. (2024). Portable glucose detector based on nickel oxide modified Screen Printed Carbon Electrode (SPCE). ITM Web of Conferences, 61, 01020. https://doi.org/10.1051/itmconf/20246101020

Ballesta-Claver, J., Salinas Velázquez, P., Valencia-Mirón, M. C., & Capitán-Vallvey, L. F. (2011). SPE biosensor for cholesterol in serum samples based on electrochemiluminescent luminol copolymer. Talanta, 86(1), 178–185. https://doi.org/10.1016/j.talanta.2011.08.057

Bhaiyya, M., Pattnaik, P. K., & Goel, S. (2021). Portable Electrochemiluminescence Platform With Laser-Induced Graphene-Based U-Shaped Bipolar Electrode for Selective Sensing of Various Analytes. IEEE Transactions on Electron Devices, 68(5), 2447–2454. https://doi.org/10.1109/TED.2021.3066083

Carvajal, M. A., Ballesta-Claver, J., Morales, D. P., Palma, A. J., Valencia-Mirón, M. C., & Capitán-Vallvey, L. F. (2012). Portable reconfigurable instrument for analytical determinations using disposable electrochemiluminescent screen-printed electrodes. Sensors and Actuators B: Chemical, 169, 46–53. https://doi.org/10.1016/j.snb.2012.01.072

Cui, H., Wang, W., Duan, C., Dong, Y., & Guo, J. (2007). Synthesis, Characterization, and Electrochemiluminescence of Luminol‐Reduced Gold Nanoparticles and Their Application in a Hydrogen Peroxide Sensor. Chemistry – A European Journal, 13(24), 6975–6984. https://doi.org/10.1002/chem.200700011

Cui, H., Zhang, Z.-F., Zou, G.-Z., & Lin, X.-Q. (2004). Potential-dependent electrochemiluminescence of luminol in alkaline solution at a gold electrode. Journal of Electroanalytical Chemistry, 566(2), 305–313. https://doi.org/10.1016/j.jelechem.2003.11.041

Dehdari Vais, R., & Heli, H. (2016). Nonenzymatic Electrochemical Sensing of Hydrogen Peroxide Based on Gold Nanolayers Covered with Snow-like Nanoparticles. Journal of Biology and Today’s World, 5(10), 186–191. https://doi.org/10.15412/J.JBTW.01051003

Díaz-Ortega, I. F., Ballesta-Claver, J., Cruz Martín, M., Benítez-Aranda, S., & Capitán-Vallvey, L. F. (2014). An ionogel composite including copolymer nanowires for disposable electrochemiluminescent sensor configurations. RSC Advances, 4(100), 57235–57244. https://doi.org/10.1039/c4ra08311c

Faridah, D. N., Solihat, I., & Yuliana, N. D. (2020). Validation of Mineral (Fe, Zn, and Cu) Analysis Methods in Carbohydrate, Protein and Fat-Rich Samples Using Microwave Digestion Method. Indonesian Journal of Chemistry, 20(2), 348. https://doi.org/10.22146/ijc.42297

Fatah, F. R. A. A., Sanjaya, A. R., Rahmawati, I., Syauqi, M. I., Gunlazuardi, J., & Ivandini, T. A. (2024). Cathodic luminol electrochemiluminescence on TiO2 nanotube array. Materials Chemistry and Physics, 319, 129288. https://doi.org/10.1016/j.matchemphys.2024.129288

Fiorani, A., Merino, J. P., Zanut, A., Criado, A., Valenti, G., Prato, M., & Paolucci, F. (2019). Advanced carbon nanomaterials for electrochemiluminescent biosensor applications. Current Opinion in Electrochemistry, 16, 66–74. https://doi.org/10.1016/j.coelec.2019.04.018

Garcia-Segura, S., Centellas, F., & Brillas, E. (2012). Unprecedented Electrochemiluminescence of Luminol on a Boron-Doped Diamond Thin-Film Anode. Enhancement by Electrogenerated Superoxide Radical Anion. The Journal of Physical Chemistry C, 116(29), 15500–15504. https://doi.org/10.1021/jp305493g

Gerlache, M., Senturk, Z., Quarin, G., & Kauffmann, J. (1997). Electrochemical behavior of H2O2 on gold. Electroanalysis, 9(14), 1088–1092. https://doi.org/10.1002/elan.1140091411

Harmesa, H., Wahyudi, A. J., Saefumillah, A., & Ivandini, T. A. (2024). Electrochemiluminescence Systems for Metal‐Ion Detection: A Systematic Review. ChemistrySelect, 9(21). https://doi.org/10.1002/slct.202401544

Irkham, Fiorani, A., Valenti, G., Kamoshida, N., Paolucci, F., & Einaga, Y. (2020). Electrogenerated Chemiluminescence by in Situ Production of Coreactant Hydrogen Peroxide in Carbonate Aqueous Solution at a Boron-Doped Diamond Electrode. Journal of the American Chemical Society, 142(3), 1518–1525. https://doi.org/10.1021/jacs.9b11842

Irkham, Putra, C. P., Kharismasari, C. Y., Zakiyyah, S. N., Rahmawati, I., Anggraningrum, I. T., Wahyuni, W. T., Valenti, G., Paolucci, F., & Hartati, Y. W. (2024). Advancements in electrochemiluminescence-based sensors for ultra-sensitive pesticide residue detection. Sensing and Bio-Sensing Research, 46, 100708. https://doi.org/10.1016/j.sbsr.2024.100708

Irkham, Rais, R. R., Ivandini, T. A., Fiorani, A., & Einaga, Y. (2021). Electrogenerated Chemiluminescence of Luminol Mediated by Carbonate Electrochemical Oxidation at a Boron-Doped Diamond. Analytical Chemistry, 93(4), 2336–2341. https://doi.org/10.1021/acs.analchem.0c04212

Irkham, Watanabe, T., Fiorani, A., Valenti, G., Paolucci, F., & Einaga, Y. (2016). Co-reactant-on-Demand ECL: Electrogenerated Chemiluminescence by the in Situ Production of S 2 O 8 2– at Boron-Doped Diamond Electrodes. Journal of the American Chemical Society, 138(48), 15636–15641. https://doi.org/10.1021/jacs.6b09020

Ivanova, A. S., Merkuleva, A. D., Andreev, S. V., & Sakharov, K. A. (2019). Method for determination of hydrogen peroxide in adulterated milk using high performance liquid chromatography. Food Chemistry, 283(August 2018), 431–436. https://doi.org/10.1016/j.foodchem.2019.01.051

Jones, M. R., & Lee, K. (2019). Determination of environmental H2O2 for extended periods by chemiluminescence with real-time inhibition of iron interferences. Microchemical Journal, 147(April), 1021–1027. https://doi.org/10.1016/j.microc.2019.04.027

Koç, Y., Moralı, U., Erol, S., & Avci, H. (2021). Electrochemical Investigation of Gold Based Screen Printed Electrodes: An Application for a Seafood Toxin Detection. Electroanalysis, 33(4), 1033–1048. https://doi.org/10.1002/elan.202060433

Laroussi, A., Raouafi, N., & Mirsky, V. M. (2021). Electrocatalytic Sensor for Hydrogen Peroxide Based on Immobilized Benzoquinone. Electroanalysis, 33(9), 2062–2070. https://doi.org/10.1002/elan.202100113

Liu, X., Niu, W., Li, H., Han, S., Hu, L., & Xu, G. (2008). Glucose biosensor based on gold nanoparticle-catalyzed luminol electrochemiluminescence on a three-dimensional sol-gel network. Electrochemistry Communications, 10(9), 1250–1253. https://doi.org/10.1016/j.elecom.2008.06.009

Lović, J., Stevanović, S., Nikolić, N. D., Petrović, S., Vuković, D., Prlainović, N., Mijin, D., & Ivić, M. A. (2017). Glucose Sensing Using Glucose Oxidase-Glutaraldehyde-Cysteine Modified Gold Electrode. International Journal of Electrochemical Science, 12(7), 5806–5817. https://doi.org/10.20964/2017.07.65

Mercante, L. A., Facure, M. H. M., Sanfelice, R. C., Migliorini, F. L., Mattoso, L. H. C., & Correa, D. S. (2017). One-pot preparation of PEDOT:PSS-reduced graphene decorated with Au nanoparticles for enzymatic electrochemical sensing of H 2 O 2. Applied Surface Science, 407, 162–170. https://doi.org/10.1016/j.apsusc.2017.02.156

Miah, M. R., & Ohsaka, T. (2006). Cathodic Detection of H 2 O 2 Using Iodide-Modified Gold Electrode in Alkaline Media. Analytical Chemistry, 78(4), 1200–1205. https://doi.org/10.1021/ac0515935

Opallo, M., & Dolinska, J. (2018). Glucose electrooxidation. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry (pp. 633–642). Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.13331-1

Patella, B., Di Vincenzo, S., Moukri, N., Bonafede, F., Ferraro, M., Lazzara, V., Giuffrè, M. R., Carbone, S., Aiello, G., Russo, M., Cipollina, C., Inguanta, R., & Pace, E. (2024). Gold nanowires-based sensor for quantification of H2O2 released by human airway epithelial cells. Talanta, 272(June 2023), 125772. https://doi.org/10.1016/j.talanta.2024.125772

Prehn, R., Cortina-Puig, M., Muñoz, F. X., Javier del Campo, F., & Abad, L. (2012). Publisher’s Note: A Non-Enzymatic Glucose Sensor Based on the Use of Gold Micropillar Array Electrodes [ J. Electrochem. Soc. , 159, F134 (2012)]. Journal of The Electrochemical Society, 159(8), X1–X1. https://doi.org/10.1149/2.037208jes

Rahmawati, I., Einaga, Y., Ivandini, T. A., & Fiorani, A. (2022). Enzymatic Biosensors with Electrochemiluminescence Transduction. In ChemElectroChem (Vol. 9, Issue 12). https://doi.org/10.1002/celc.202200175

Rahmawati, I., Fiorani, A., Irkham, Wahyuni, W. T., Wahyuono, R. A., Einaga, Y., & Ivandini, T. A. (2025). Comparison between electrochemiluminescence of luminol and electrocatalysis by Prussian blue for the detection of hydrogen peroxide. Analytical Methods, 17(8), 1790–1796. https://doi.org/10.1039/D4AY02175D

Rahmawati, I., Fiorani, A., Sanjaya, A. R., Irkham, Du, J., Saepudin, E., Einaga, Y., & Ivandini, T. A. (2024). Modification of boron-doped diamond electrode with polyaniline and gold particles to enhance the electrochemiluminescence of luminol for the detection of reactive oxygen species (hydrogen peroxide and hypochlorite). Diamond and Related Materials, 144, 110956. https://doi.org/10.1016/j.diamond.2024.110956

Rahmawati, I., Irkham, I., Wibowo, R., Gunlazuardi, J., Einaga, Y., & Ivandini, T. A. (2021). Electrogenerated Chemiluminescence for Immunoassay Applications. Indonesian Journal of Chemistry, 21(6), 1599. https://doi.org/10.22146/ijc.64596

Rahmawati, I., Saepudin, E., Fiorani, A., Einaga, Y., & Ivandini, T. A. (2022). Electrogenerated chemiluminescence of luminol at a boron-doped diamond electrode for the detection of hypochlorite. The Analyst, 147(12), 2696–2702. https://doi.org/10.1039/D2AN00540A

Rayaroth, M. P., Aravindakumar, C. T., Shah, N. S., & Boczkaj, G. (2022). Advanced oxidation processes (AOPs) based wastewater treatment - unexpected nitration side reactions - a serious environmental issue: A review. Chemical Engineering Journal, 430(P4), 133002. https://doi.org/10.1016/j.cej.2021.133002

Rismetov, B., Ivandini, T. A., Saepudin, E., & Einaga, Y. (2014). Electrochemical detection of hydrogen peroxide at platinum-modified diamond electrodes for an application in melamine strip tests. Diamond and Related Materials, 48, 88–95. https://doi.org/10.1016/j.diamond.2014.07.003

Rong, J., Chi, Y., Zhang, Y., Chen, L., & Chen, G. (2010). Enhanced electrochemiluminescence of luminol-O2 system at gold-hydrophobic ionic liquid|water interface. Electrochemistry Communications, 12(2), 270–273. https://doi.org/10.1016/j.elecom.2009.12.012

Syukur, J. M., Rahmawati, I., Sanjaya, A. R., Ridwan, M., Fiorani, A., Einaga, Y., & Ivandini, T. A. (2023). Modification of Screen-printed Carbon Electrodes with Gold Particles to Enhance Luminol Electrochemiluminescence for Hydrogen Peroxide Detection. Sensors and Materials, 35(5), 1785. https://doi.org/10.18494/SAM4360

Tian, K., Nie, F., Luo, K., Zheng, X., & Zheng, J. (2017). A sensitive electrochemiluminescence glucose biosensor based on graphene quantum dot prepared from graphene oxide sheets and hydrogen peroxide. Journal of Electroanalytical Chemistry, 801(April), 162–170. https://doi.org/10.1016/j.jelechem.2017.07.019

Valenti, G., Rampazzo, E., Kesarkar, S., Genovese, D., Fiorani, A., Zanut, A., Palomba, F., Marcaccio, M., Paolucci, F., & Prodi, L. (2018). Electrogenerated chemiluminescence from metal complexes-based nanoparticles for highly sensitive sensors applications. Coordination Chemistry Reviews, 367, 65–81. https://doi.org/10.1016/j.ccr.2018.04.011

Wahyuni, W. T., Ivandini, T. A., Jiwanti, P. K., Saepudin, E., Gunlazuardi, J., & Einaga, Y. (2015). Electrochemical Behavior of Zanamivir at Gold-Modified Boron-Doped Diamond Electrodes for an Application in Neuraminidase Sensing. Electrochemistry, 83(5), 357–362. https://doi.org/10.5796/electrochemistry.83.357

Zamfir, L.-G., Rotariu, L., Marinescu, V. E., Simelane, X. T., Baker, P. G. L., Iwuoha, E. I., & Bala, C. (2016). Non-enzymatic polyamic acid sensors for hydrogen peroxide detection. Sensors and Actuators B: Chemical, 226, 525–533. https://doi.org/10.1016/j.snb.2015.12.026

Downloads

Published

2025-06-30

How to Cite

Syukur, J. M., Sanjaya, A. R., Rahmawati, I., & Ridwan, M. (2025). Preliminary study of screen–printed gold electrode for H2O2 sensor based on electrochemiluminescence of luminol. Environmental and Materials, 3(1), 1–14. https://doi.org/10.61511/eam.v3i1.2025.1656

Issue

Section

Articles

Citation Check