Amine-modified Ni-DOBDC MOF for CO2 capture: CO2 adsorption capacity and reusability
DOI:
https://doi.org/10.61511/eam.v2i2.2024.1431Keywords:
Ni-DOBDC MOF, ethylenediamine, CO2 adsorption, biogas modelAbstract
Background: Anthropogenic carbon dioxide (CO₂) emissions have risen significantly due to the extensive use of fossil fuels, necessitating the development of effective CO₂ capture and conversion techniques. Adsorption using Metal-Organic Frameworks (MOFs) has shown great potential due to their high CO₂ adsorption capacity, particularly Ni-based MOFs. Enhancing their adsorption efficiency remains a key research focus to improve sustainability in CO₂ capture applications. Methods: Ni-based MOF (Ni-DOBDC) was synthesized using the solvothermal method, employing DMF as the solvent and 2,5-dihydroxyterephthalic acid (DOBDC) as the organic ligand. To enhance CO₂ adsorption capacity, Ni-DOBDC was further modified with ethylenediamine (EDA) via post-synthetic modification. Structural characterization was performed using XRD, confirming similarity to the Ni-DOBDC reference (CCDC 288477), and FTIR, which showed enhanced absorbance peaks. SEM-EDX analysis revealed a flower-like morphology with an average particle size of 0.75 μm. CO₂ adsorption tests were conducted on Ni-DOBDC and EDA/Ni-DOBDC (10%) using the titration method under controlled conditions. Findings: The CO₂ adsorption capacity of Ni-DOBDC and EDA/Ni-DOBDC was tested at 70°C with a CO₂ concentration of 50% in N₂. EDA modification significantly improved CO₂ adsorption capacity, with EDA/Ni-DOBDC achieving 9.95 mmol g⁻¹ compared to pristine Ni-DOBDC’s 6.44 mmol g⁻¹. However, Ni-DOBDC exhibited better regeneration ability in a three-cycle reusability test, likely due to EDA leaching during regeneration. Conclusion: EDA-modified Ni-DOBDC demonstrates enhanced CO₂ adsorption capacity, making it a promising material for CO₂ capture applications. However, its reduced regeneration stability suggests the need for further optimization to improve long-term performance. Future studies should explore strategies to minimize EDA leaching while maintaining high adsorption efficiency. Novelty/Originality of this article: This study provides new insights into improving Ni-based MOF performance for CO₂ capture through post-synthetic modification with EDA. The findings highlight a trade-off between increased adsorption capacity and material stability, emphasizing the need for further refinement in MOF functionalization strategies.
References
Adhikari, A. K., & Lin, K. S. (2016). Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74(Ni, Co) by doping palladium-containing activated carbon. Chemical Engineering Journal, 284, 1348–1360. https://doi.org/10.1016/J.CEJ.2015.09.086
Asghar, A., Iqbal, N., Aftab, L., Noor, T., Kariuki, B. M., Kidwell, L., & Easun, T. L. (2020a). Ethylenediamine loading into a manganese-based metal–organic framework enhances water stability and carbon dioxide uptake of the framework. Royal Society Open Science, 7(3). https://doi.org/10.1098/RSOS.191934
Asghar, A., Iqbal, N., Noor, T., & Khan, J. (2020b). Ethylendiamine (EDA) loading on MOF-5 for enhanced carbon dioxide capture applications. IOP Conference Series: Earth and Environmental Science, 471(1), 012009. https://doi.org/10.1088/1755-1315/471/1/012009
Basu, S., Cano-Odena, A., & Vankelecom, I. F. J. (2011). MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations. Separation and Purification Technology, 81(1), 31–40. https://doi.org/10.1016/J.SEPPUR.2011.06.037
Chen, C., Feng, X., Zhu, Q., Dong, R., Yang, R., Cheng, Y., & He, C. (2019). Microwave-Assisted Rapid Synthesis of Well-Shaped MOF-74 (Ni) for CO2 Efficient Capture. Inorganic Chemistry, 58(4), 2717–2728. https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.8b03271
Chen, C., Kosari, M., Jing, M., & He, C. (2022). Microwave-assisted synthesis of bimetallic NiCo-MOF-74 with enhanced open metal site for efficient CO2 capture. Environmental Functional Materials, 1(3), 253–266. https://doi.org/10.1016/J.EFMAT.2023.01.002
Chen, S., Li, X., Duan, J., Fu, Y., Wang, Z., Zhu, M., & Li, N. (2021). Investigation of highly efficient adsorbent based on Ni-MOF-74 in the separation of CO2 from natural gas. Chemical Engineering Journal, 419, 129653. https://doi.org/10.1016/J.CEJ.2021.129653
Choe, J. H., Kim, H., & Hong, C. S. (2021). MOF-74 type variants for CO2 capture. Materials Chemistry Frontiers, 5(14), 5172–5185. https://doi.org/10.1039/D1QM00205H
Daud, A. D., Lim, H. N., Ibrahim, I., Endot, N. A., Gowthaman, N. S. K., Jiang, Z. T., & Cordova, K. E. (2022). An effective metal-organic framework-based electrochemical non-enzymatic glucose sensor. Journal of Electroanalytical Chemistry, 921, 116676. https://doi.org/10.1016/J.JELECHEM.2022.116676
Faisal, M., Pamungkas, A. Z., & Krisnandi, Y. K. (2021). Study of Amine Functionalized Mesoporous Carbon as CO2 Storage Materials. Processes, 9(3), 456. https://doi.org/10.3390/pr9030456
Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. Ö., Snurr, R. Q., O’Keeffe, M., Kim, J., & Yaghi, O. M. (2010). Ultrahigh porosity in metal-organic frameworks. Science, 329(5990), 424–428. https://www.science.org/doi/abs/10.1126/science.1192160
Ghanbari, T., Abnisa, F., & Wan Daud, W. M. A. (2020). A review on production of metal organic frameworks (MOF) for CO2 adsorption. Science of The Total Environment, 707, 135090. https://doi.org/10.1016/J.SCITOTENV.2019.135090
Herm, Z. R., Krishna, R., & Long, J. R. (2012). CO2/CH4, CH4/H2 and CO2/CH4/H2 separations at high pressures using Mg2(dobdc). Microporous and Mesoporous Materials, 151, 481–487. https://doi.org/10.1016/J.MICROMESO.2011.09.004
Huang, W., Zhou, X., Xia, Q., Peng, J., Wang, H., & Li, Z. (2014). Preparation and Adsorption Performance of GrO@Cu-BTC for Separation of CO2/CH4. Industrial and Engineering Chemistry Research, 53(27), 11176–11184. https://doi.org/10.1021/IE501040S
Kalyon, H. Y., Yilmaz, O., Gencten, M., Gorduk, S., & Sahin, Y. (2024). Ethylenediamine-functionalized metal-organic frameworks for applications of electrochemical supercapacitors as an additive. Synthetic Metals, 306, 117627. https://doi.org/10.1016/J.SYNTHMET.2024.117627
Kim, D. J., Lee, H. I., Yie, J. E., Kim, S. J., & Kim, J. M. (2005). Ordered mesoporous carbons: Implication of surface chemistry, pore structure and adsorption of methyl mercaptan. Carbon, 43(9), 1868–1873. https://doi.org/10.1016/J.CARBON.2005.02.035
Lei, L., Cheng, Y., Chen, C., Kosari, M., Jiang, Z., & He, C. (2022a). Taming structure and modulating carbon dioxide (CO2) adsorption isosteric heat of nickel-based metal organic framework (MOF-74(Ni)) for remarkable CO2 capture. Journal of Colloid and Interface Science, 612, 132–145. https://doi.org/10.1016/J.JCIS.2021.12.163
Lei, L., Cheng, Y., Chen, C., Kosari, M., Jiang, Z., & He, C. (2022b). Taming structure and modulating carbon dioxide (CO2) adsorption isosteric heat of nickel-based metal organic framework (MOF-74(Ni)) for remarkable CO2 capture. Journal of Colloid and Interface Science, 612, 132–145. https://doi.org/10.1016/J.JCIS.2021.12.163
Lestari, W. W., Wibowo, A. H., Astuti, S., Irwinsyah, Pamungkas, A. Z., & Krisnandi, Y. K. (2018). Fabrication of hybrid coating material of polypropylene itaconate containing MOF-5 for CO2 capture. Progress in Organic Coatings, 115, 49–55. https://doi.org/10.1016/J.PORGCOAT.2017.11.006
Li, L., Yang, J., Li, J., Li, J., & Chen, Y. (2014). Separation of CO2/CH4 and CH4/N2 mixtures by M/DOBDC: A detailed dynamic comparison with MIL-100(Cr) and activated carbon. Microporous and Mesoporous Materials, 198, 236–246. https://doi.org/10.1016/J.MICROMESO.2014.07.041
Liu, F., Wang, T., Dong, H., & Liu, W. (2023). Modified metal–organic framework by a novel coordinatively unsaturated amine grafting mechanism for direct air capture of CO2. Chemical Engineering Journal, 454, 140431. https://doi.org/10.1016/J.CEJ.2022.140431
Pamei, M., Kumar, S., Achumi, A. G., & Puzari, A. (2022). Supercapacitive amino-functionalized cobalt and copper metal-organic frameworks with varying surface morphologies for energy storage. Journal of Electroanalytical Chemistry, 924, 116885. https://doi.org/10.1016/J.JELECHEM.2022.116885
Qasem, N. A. A., Ben-Mansour, R., & Habib, M. A. (2018). An efficient CO2 adsorptive storage using MOF-5 and MOF-177. Applied Energy, 210, 317–326. https://doi.org/10.1016/J.APENERGY.2017.11.011
Sin, M., Kavoosi, N., Rauche, M., Pallmann, J., Paasch, S., Senkovska, I., Kaskel, S., & Brunner, E. (2019). In Situ 13 C NMR Spectroscopy Study of CO2/CH4 Mixture Adsorption by Metal-Organic Frameworks: Does Flexibility Influence Selectivity? Langmuir, 35(8), 3162–3170. https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.8b03554
Song, K., Liang, S., Zhong, X., Wang, M., Mo, X., Lei, X., & Lin, Z. (2022). Tailoring the crystal forms of the Ni-MOF catalysts for enhanced photocatalytic CO2-to-CO performance. Applied Catalysis B: Environmental, 309, 121232. https://doi.org/10.1016/J.APCATB.2022.121232
Stolar, T., Prašnikar, A., Martinez, V., Karadeniz, B., Bjelić, A., Mali, G., Friščić, T., Likozar, B., & Užarević, K. (2021). Scalable mechanochemical amorphization of bimetallic Cu-Zn MOF-74 catalyst for selective CO2 reduction reaction to methanol. ACS Applied Materials and Interfaces, 13(2), 3070–3077. https://pubs.acs.org/doi/abs/10.1021/acsami.0c21265
Ullah, S., Bustam, M. A., Al-Sehemi, A. G., Assiri, M. A., Abdul Kareem, F. A., Mukhtar, A., Ayoub, M., & Gonfa, G. (2020). Influence of post-synthetic graphene oxide (GO) functionalization on the selective CO2/CH4 adsorption behavior of MOF-200 at different temperatures; an experimental and adsorption isotherms study. Microporous and Mesoporous Materials, 296, 110002. https://doi.org/10.1016/J.MICROMESO.2020.110002
Wolfgong, W. J. (2016). Chemical analysis techniques for failure analysis: Part 1, common instrumental methods. Handbook of Materials Failure Analysis with Case Studies from the Aerospace and Automotive Industries, 279–307. https://doi.org/10.1016/B978-0-12-800950-5.00014-4
Zhou, J., Xu, L., Gai, H., Xu, N., Ren, Z., Hou, X., Chen, Z., Han, Z., Sarker, D., Levchenko, S. V., & Huang, M. (2024). Interpretable Data-Driven Descriptors for Establishing the Structure-Activity Relationship of Metal–Organic Frameworks Toward Oxygen Evolution Reaction. Angewandte Chemie International Edition, 63(36), e202409449. https://doi.org/10.1002/ANIE.202409449
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2024 Irsan Fahriansyah, Irena Khatrin, Iman Abdullah, Yuni Krisyuningsih Krisnandi

This work is licensed under a Creative Commons Attribution 4.0 International License.