A review of photoelectrochemical water oxidation using hematite photoanode
DOI:
https://doi.org/10.61511/eam.v2i2.2024.1368Keywords:
hematite photoanode, 3D electrodes, PEC water splittingAbstract
Background: The sun, as an abundant and renewable energy source, provides a sustainable alternative to fossil fuels, which contribute significantly to CO₂ emissions and global warming. With CO₂ emissions surpassing 35 billion tons in 2023, the need for clean energy solutions has become increasingly urgent. Solar energy utilization includes photoelectrochemical (PEC) water splitting, where hematite is widely recognized as an efficient photoanode material due to its availability, stability, and favorable band gap for visible light absorption. However, hematite faces challenges such as poor conductivity, surface recombination, and slow oxygen evolution reaction (OER) kinetics, which limit its performance. Methods: This review examines various strategies to enhance hematite photoanode performance for PEC water splitting. The study explores three key approaches: (1) using three-dimensional conductive substrates with high surface area to facilitate heterojunction formation, (2) doping with tetravalent metal ions (e.g., Ti⁴⁺) to improve conductivity and charge carrier density, and (3) integrating Bi₂WO₆ with hematite to enhance charge separation and photoelectrochemical efficiency. The hydrothermal method was applied for hematite fabrication due to its feasibility, cost-effectiveness, and scalability. Findings: The analysis highlights the effectiveness of each strategy in overcoming hematite’s inherent limitations. The use of 3D conductive substrates improves electron transport and surface reaction sites, while Ti⁴⁺ doping enhances charge carrier density and conductivity. Conclusion: Hematite remains a promising photoanode material for PEC water splitting, but its limitations must be addressed to maximize efficiency. The combination of 3D conductive substrates, metal ion doping, and Bi₂WO₆ integration has shown potential in improving hematite’s photoelectrochemical performance. Novelty/Originality of this article: This review provides a comprehensive analysis of hematite performance enhancement strategies, focusing on the synergistic effects of 3D conductive substrates, Ti⁴⁺ doping, and Bi₂WO₆ integration.
References
Abbas, M. W., Soomro, R. A., Kalwar, N. H., Zahoor, M., Avci, A., Pehlivan, E., Hallam, K. R., & Willander, M. (2019). Carbon quantum dot coated Fe3O4 hybrid composites for sensitive electrochemical detection of uric acid. Microchemical Journal, 146, 517–524. https://doi.org/10.1016/j.microc.2019.01.034
Ali, M., Pervaiz, E., Noor, T., Rabi, O., Zahra, R., & Yang, M. (2021). Recent advancements in MOF-based catalysts for applications in electrochemical and photoelectrochemical water splitting: A review. International Journal of Energy Research, 45(2), 1190–1226. John Wiley and Sons Ltd. https://doi.org/10.1002/er.5807
Amano, F., Mukohara, H., & Shintani, A. (2018). Rutile Titania Particulate Photoelectrodes Fabricated by Two-Step Annealing of Titania Nanotube Arrays. Journal of The Electrochemical Society, 165(4), H3164–H3169. https://doi.org/10.1149/2.0231804jes
Amano, F., Mukohara, H., Shintani, A., & Tsurui, K. (2019). Solid Polymer Electrolyte-Coated Macroporous Titania Nanotube Photoelectrode for Gas-Phase Water Splitting. ChemSusChem, 12(9), 1925–1930. https://doi.org/10.1002/cssc.201802178
Amano, F., Uchiyama, A., Furusho, Y., & Shintani, A. (2020). Effect of conductive substrate on the photoelectrochemical properties of Cu2O film electrodes for methyl viologen reduction. Journal of Photochemistry and Photobiology A: Chemistry, 389. https://doi.org/10.1016/j.jphotochem.2019.112254
Apriandanu, D. O. B., Nakayama, S., Shibata, K., & Amano, F. (2023a). Ti-doped Fe2O3 photoanodes on three-dimensional titanium microfiber felt substrate for photoelectrochemical oxygen evolution reaction. Electrochimica Acta, 456. https://doi.org/10.1016/j.electacta.2023.142434
Apriandanu, D. O. B., Nomura, S., Nakayama, S., Tateishi, C., & Amano, F. (2023b). Effect of two-step annealing on photoelectrochemical properties of hydrothermally prepared Ti-doped Fe2O3 films. Catalysis Today, 411–412. https://doi.org/10.1016/j.cattod.2022.06.041
Bai, S., Tian, K., Meng, J. C., Zhao, Y., Sun, J., Zhang, K., Feng, Y., Luo, R., Li, D., & Chen, A. (2021). Reduced graphene oxide decorated SnO2/BiVO4 photoanode for photoelectrochemical water splitting. Journal of Alloys and Compounds, 855, 156780. https://doi.org/10.1016/j.jallcom.2020.156780
Brillet, J., Grätzel, M., & Sivula, K. (2010). Decoupling Feature Size and Functionality in Solution-Processed, Porous Hematite Electrodes for Solar Water Splitting. Nano Letters, 10(10), 4155–4160. https://doi.org/10.1021/nl102708c
Cesar, I., Sivula, K., Kay, A., Zboril, R., & Grätzel, M. (2009). Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting. Journal of Physical Chemistry C, 113(2), 772–782. https://doi.org/10.1021/jp809060p
Chae, S. Y., Rahman, G., & Joo, O. shim. (2019). Elucidation of the structural and charge separation properties of titanium-doped hematite films deposited by electrospray method for photoelectrochemical water oxidation. Electrochimica Acta, 297, 784–793. https://doi.org/10.1016/j.electacta.2018.11.166
Cheng, J., Chen, C., Zeng, X., Chen, M., Shen, Y., & Xie, Q. (2024). Enhanced photoelectrochemistry water splitting based on the bi-piezoelectric Z-scheme pn heterojunction of an n-CdTe/p-ZnO nanorods array. Journal of Alloys and Compounds, 976. https://doi.org/10.1016/j.jallcom.2023.173114
Crippa, M., Guizzardi, D., Pagani, F., Banja, M., Muntean, M., Schaaf E., Becker, W., … & Vignati, E. (2023). GHG emissions of all world countries. Publications Office of the European Union. https://doi.org/10.2760/953322
Dong, G., Zhang, Y., Wang, W., Wang, L., & Bi, Y. (2017). Facile Fabrication of Nanoporous Bi2WO6 Photoanodes for Efficient Solar Water Splitting. Energy Technology, 5(11), 1912–1918. https://doi.org/10.1002/ente.201700138
Eqi, M., Shi, C., Xie, J., Kang, F., Qi, H., Tan, X., Huang, Z., Liu, J., & Guo, J. (2023). Synergetic effect of Ni-Au bimetal nanoparticles on urchin-like TiO2 for hydrogen and arabinose co-production by glucose photoreforming. Advanced Composites and Hybrid Materials, 6(1). https://doi.org/10.1007/s42114-022-00580-6
Fu, L., Lin, Y., Fang, W., Xv, R., & Shang, X. (2023). Charge transfer enhancement by substitutional N and NiFeOOH cocatalyst of N-TiO2/NiFeOOH nanorod photoanode for solar water splitting. Electrochimica Acta, 467, 143137. https://doi.org/10.1016/j.electacta.2023.143137
Gong, L., Yin, H., Nie, C., Sun, X., Wang, X., & Wang, M. (2019). Influence of Anchoring Groups on the Charge Transfer and Performance of p-Si/TiO2/Cobaloxime Hybrid Photocathodes for Photoelectrochemical H2 Production. ACS Applied Materials and Interfaces, 11(37), 34010–34019. https://doi.org/10.1021/acsami.9b12182
Holmes‐Gentle, I., Alhersh, F., Bedoya‐Lora, F., & Hellgardt, K. (2018). Photoelectrochemical Reaction Engineering for Solar Fuels Production. In Photoelectrochemical Solar Cells (pp. 1–41). Wiley. https://doi.org/10.1002/9781119460008.ch1
Homura, H., Tomita, O., Higashi, M., & Abe, R. (2017). Fabrication of CuInS2 photocathodes on carbon microfiber felt by arc plasma deposition for efficient water splitting under visible light. Sustainable Energy and Fuels, 1(4), 699–709. https://doi.org/10.1039/c7se00008a
Huang, Q., Zhao, Y., & Li, Y. (2024). Improved photoelectrochemical water splitting performance of Sn-doped hematite photoanode with an amorphous cobalt oxide layer. International Journal of Hydrogen Energy, 51, 1176–1183. https://doi.org/10.1016/j.ijhydene.2023.11.033
Kay, A., Cesar, I., & Grätzel, M. (2006). New benchmark for water photooxidation by nanostructured α-Fe 2O3 films. Journal of the American Chemical Society, 128(49), 15714–15721. https://doi.org/10.1021/ja064380l
Kim, T.-G., Joshi, B., Park, C.-W., Samuel, E., Kim, M.-W., Swihart, M. T., & Yoon, S. S. (2019). Supersonically sprayed iron oxide nanoparticles with atomic-layer-deposited ZnO/TiO2 layers for solar water splitting. Journal of Alloys and Compounds, 798, 35–44. https://doi.org/10.1016/j.jallcom.2019.05.255
Koyale, P. A., & Delekar, S. D. (2024). A review on practical aspects of CeO2 and its composites for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 51, 515–530. https://doi.org/10.1016/j.ijhydene.2023.06.251
Kumar, D., Sharma, S., & Khare, N. (2020). Enhanced photoelectrochemical performance of NaNbO3 nanofiber photoanodes coupled with visible light active g-C3N4 nanosheets for water splitting. Nanotechnology, 31(13), 135402. https://doi.org/10.1088/1361-6528/ab59a1
Lee, M. H., Park, J. H., Han, H. S., Song, H. J., Cho, I. S., Noh, J. H., & Hong, K. S. (2014). Nanostructured Ti-doped hematite (α-Fe2O3) photoanodes for efficient photoelectrochemical water oxidation. International Journal of Hydrogen Energy, 39(30), 17501–17507. https://doi.org/10.1016/j.ijhydene.2013.10.031
Li, L., Wu, S., Zhou, Z., Guo, P., & Li, X. (2020). Size-dependent performances in homogeneous, controllable, and large-area silicon wire array photocathode. Journal of Power Sources, 473, 228580. https://doi.org/10.1016/j.jpowsour.2020.228580
Li, Y., Feng, J., Li, H., Wei, X., Wang, R., & Zhou, A. (2016). Photoelectrochemical splitting of natural seawater with α-Fe 2 O 3 /WO 3 nanorod arrays. International Journal of Hydrogen Energy, 41(7), 4096–4105. https://doi.org/10.1016/j.ijhydene.2016.01.027
Mao, A., Park, N.-G., Han, G. Y., & Park, J. H. (2011). Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: use for photoelectrochemical water splitting. Nanotechnology, 22(17), 175703. https://doi.org/10.1088/0957-4484/22/17/175703
Mazzaro, R., Boscolo Bibi, S., Natali, M., Bergamini, G., Morandi, V., Ceroni, P., & Vomiero, A. (2019). Hematite nanostructures: An old material for a new story. Simultaneous photoelectrochemical oxidation of benzylamine and hydrogen production through Ti doping. Nano Energy, 61, 36–46. https://doi.org/10.1016/j.nanoen.2019.04.013
Merino-Garcia, I., Crespo, S., Perfecto-Irigaray, M., Beobide, G., Irabien, A., & Albo, J. (2024). Tailoring multi-layered BiVO4/WO3 photoanodes for an efficient photoelectrochemical gas-phase solar water splitting. Catalysis Today, 432, 114581. https://doi.org/10.1016/j.cattod.2024.114581
Monllor-Satoca, D., Bärtsch, M., Fàbrega, C., Genç, A., Reinhard, S., Andreu, T., Arbiol, J., Niederberger, M., & Morante, J. R. (2015). What do you do, titanium? Insight into the role of titanium oxide as a water oxidation promoter in hematite-based photoanodes. Energy & Environmental Science, 8(11), 3242–3254. https://doi.org/10.1039/C5EE01679G
Monny, S. A., Wang, Z., Konarova, M., & Wang, L. (2021). Bismuth based photoelectrodes for solar water splitting. Journal of Energy Chemistry, 61, 517–530. https://doi.org/10.1016/j.jechem.2021.01.047
Mushtaq, M., Sathyakam, P. U., & Vijayaraghavan, R. (2024). Performance, comprehension and applications of hematite-based photoanodes in PEC water splitting. Next Materials, 3, 100159. https://doi.org/10.1016/j.nxmate.2024.100159
Peng, Q., Wang, J., Feng, Z., Du, C., Wen, Y., Shan, B., & Chen, R. (2017). Enhanced Photoelectrochemical Water Oxidation by Fabrication of p-LaFeO3/n-Fe2O3 Heterojunction on Hematite Nanorods. The Journal of Physical Chemistry C, 121(24), 12991–12998. https://doi.org/10.1021/acs.jpcc.7b01817
Rahman, G., & Joo, O. S. (2013). Facile preparation of nanostructured α-Fe2O3 thin films with enhanced photoelectrochemical water splitting activity. Journal of Materials Chemistry A, 1(18), 5554–5561. https://doi.org/10.1039/c3ta10553a
Sadhasivam, S., Anbarasan, N., Gunasekaran, A., Sadhasivam, T., Jeganathan, K., & Oh, T. H. (2023). Highly efficient In2S3 nanosphere decorated WO3/Bi2WO6 dual heterostructure nanoflake arrays for enhanced low bias watersplitting under visible light irradiation. Surfaces and Interfaces, 39. https://doi.org/10.1016/j.surfin.2023.102892
Shaddad, M. N., Arunachalam, P., Hezam, M., & Al-Mayouf, A. M. (2019). Cooperative Catalytic Behavior of SnO2 and NiWO4 over BiVO4 Photoanodes for Enhanced Photoelectrochemical Water Splitting Performance. Catalysts, 9(11), 879. https://doi.org/10.3390/catal9110879
Shaner, M. R., McKone, J. R., Gray, H. B., & Lewis, N. S. (2015). Functional integration of Ni-Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution. Energy and Environmental Science, 8(10), 2977–2984. https://doi.org/10.1039/c5ee01076d
Song, K., He, F., Zhou, E., Wang, L., Hou, H., & Yang, W. (2022). Boosting solar water oxidation activity of BiVO4 photoanode through an efficient in-situ selective surface cation exchange strategy. Journal of Energy Chemistry, 68, 49–59. https://doi.org/10.1016/j.jechem.2021.11.024
Su, J., Guo, L., Bao, N., & Grimes, C. A. (2011). Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Letters, 11(5), 1928–1933. https://doi.org/10.1021/nl2000743
Subramanian, A., Gracia-Espino, E., Annamalai, A., Lee, H. H., Lee, S. Y., Choi, S. H., & Jang, J. S. (2018). Effect of tetravalent dopants on hematite nanostructure for enhanced photoelectrochemical water splitting. Applied Surface Science, 427, 1203–1212. https://doi.org/10.1016/j.apsusc.2017.09.042
Tahir, A. A., Upul Wijayantha, K. G., Saremi-Yarahmadi, S., Maznar, M., & McKee, V. (2009). Nanostructured α-Fe2O3 thin films for photoelectrochemical hydrogen generation. Chemistry of Materials, 21(16), 3763–3772. https://doi.org/10.1021/cm803510v
Toe, C. Y., Scott, J., Amal, R., & Ng, Y. H. (2019). Recent advances in suppressing the photocorrosion of cuprous oxide for photocatalytic and photoelectrochemical energy conversion. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 40, 191–211. https://doi.org/10.1016/j.jphotochemrev.2018.10.001
Tu, W., Wang, Z., & Dai, Z. (2018). Selective photoelectrochemical architectures for biosensing: Design, mechanism and responsibility. TrAC - Trends in Analytical Chemistry, 105, 470–483. https://doi.org/10.1016/j.trac.2018.06.007
Verma, A., & Pala, R. G. (2022). Practical semiconductor physics perspective of materials photoelectrochemistry. Current Opinion in Electrochemistry, 36. https://doi.org/10.1016/j.coelec.2022.101160
Wang, J., Du, C., Peng, Q., Yang, J., Wen, Y., Shan, B., & Chen, R. (2017). Enhanced photoelectrochemical water splitting performance of hematite nanorods by Co and Sn co-doping. International Journal of Hydrogen Energy, 42(49), 29140–29149. https://doi.org/10.1016/j.ijhydene.2017.10.080
Warwick, M. E. A., Carraro, G., Gasparotto, A., Maccato, C., Barreca, D., Sada, C., Bontempi, E., Gönüllü, Y., & Mathur, S. (2015). Interplay of thickness and photoelectrochemical properties in nanostructured α-Fe 2 O 3 thin films. Physica Status Solidi (a), 212(7), 1501–1507. https://doi.org/10.1002/pssa.201532366
Zhang, J., Zhu, G., Liu, W., Xi, Y., Golosov, D. A., Zavadski, S., & Melnikov, S. N. (2020a). 3D core-shell WO3@α-Fe2O3 photoanode modified by ultrathin FeOOH layer for enhanced photoelectrochemical performances. Journal of Alloys and Compounds, 834. https://doi.org/10.1016/j.jallcom.2020.154992
Zhang, S., Liu, Z., Chen, D., & Yan, W. (2020b). An efficient hole transfer pathway on hematite integrated by ultrathin Al2O3 interlayer and novel CuCoOx cocatalyst for efficient photoelectrochemical water oxidation. Applied Catalysis B: Environmental, 277. https://doi.org/10.1016/j.apcatb.2020.119197
Zhang, Y., Bu, Y., Wang, L., & Ao, J.-P. (2021). Regulation of the photogenerated carrier transfer process during photoelectrochemical water splitting: A review. Green Energy & Environment, 6(4), 479–495. https://doi.org/10.1016/j.gee.2020.11.007
Zhao, J., Bao, K., Xie, M., Wei, D., Yang, K., Zhang, X., Zhang, C., Wang, Z., & Yang, X. (2022). Two-dimensional ultrathin networked CoP derived from Co(OH)2 as efficient electrocatalyst for hydrogen evolution. Advanced Composites and Hybrid Materials, 5(3), 2421–2428. https://doi.org/10.1007/s42114-022-00455-w
Zhao, Y., Westerik, P., Santbergen, R., Zoethout, E., Gardeniers, H., & Bieberle-Hütter, A. (2020). From Geometry to Activity: A Quantitative Analysis of WO3/Si Micropillar Arrays for Photoelectrochemical Water Splitting. Advanced Functional Materials, 30(13). https://doi.org/10.1002/adfm.201909157
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2024 Odilia Galuh Ismoyo Bodro, Ilham Aksan Maulana

This work is licensed under a Creative Commons Attribution 4.0 International License.