Preparation of boron-doped diamond microelectrodes to determine the distribution size of platinum nanoparticles using current transient method

Authors

  • Aliyah Universitas Indonesia, Indonesia
  • Reza Rizqi Nurhidayat Universitas Indonesia, Indonesia
  • Afiten Rahmin Sanjaya Universitas Indonesia, Indonesia
  • Rahmat Wibowo Universitas Indonesia, Indonesia
  • Yasuaki Einaga Keio University, Indonesia
  • Endang Saepudin Universitas Indonesia, Indonesia
  • Tribidasari Anggraningrum Ivandini Universitas Indonesia, Indonesia

DOI:

https://doi.org/10.61511/eam.v1i1.2023.117

Keywords:

boron-doped diamond (BDD), chronoamperometry, microelectrodes, platinum nanoparticles, size distribution

Abstract

Boron-doped diamond (BDD) microelectrodes were prepared to investigate the correlation of hydrazine oxidation current responses with Pt nanoparticle (Pt NP) size distribution. The BDD film was grown on the surface of a tungsten needle with a diameter of 25 µm. An average particle size of around 5 µm BDD crystalline was successfully synthesized using a microwave plasma-assisted chemical vapor deposition technique. The Raman spectrum confirmed the presence of diamond formation as indicated by peaks corresponding to C-C sp3 bonds, while X-ray photoelectron spectroscopy spectrum showed the presence of C-H and C-OH bonds on the surface of the BDD microelectrode. Meanwhile the Pt nanoparticles was synthesized through reduction reaction of  PtCl62- solution using NaBH4 with citric acid as the capping agent. Particles size between 4.46 to 4.78 nm were observed by using TEM measurements. The BDD microelectrodes were utilized to investigate the relationship between Pt nanoparticle size distribution and the current generated from the oxidation reaction of 15 mM hydrazine in a 50 mM phosphate buffer solution pH 7.4 in the presence of 1.0 mL nanoparticle solutions. A current range of 5 and 6 nA with a noise level of 0.15 nA was observed showing a good correlation with the particle sizes of Pt NPs. Comparison was also performed with the measurements using Au microelectrodes, indicated that the prepared BDD microelectrodes is promising for the measurements of nanoparticle sizes distribution, especially Pt NPs.

References

Aliyah, Nasution, M. A. F., Putri, Y. M. T. A., Gunlazuardi, J., and Ivandini, T. A., (2022.) Modification of Carbon Foam with 4-Mercaptobenzoic Acid Functionalised Gold Nanoparticles for an Application in a Yeast-Based Microbial Fuel Cell. RSC Advances 12 (44), 28647-57. https://doi.org/10.1039/d2ra05100a

Alligrant, T. M., Nettleton, E. G., & Crooks, R. M. (2013). Electrochemical detection of individual DNA hybridization events. Lab Chip, 13(3), 349-354. https://doi.org/10.1039/C2LC40993C

Asai, K., Ivandini, T. A., Falah, M., & Einaga, Y. (2016). Surface termination effect of boron‐doped diamond on the electrochemical oxidation of adenosine phosphate. Electroanalysis 128(1), 177-182. https://doi.org/10.1002/elan.201500505

Castañeda, A. D., Alligrant, T. M., Loussaert, J. A., & Crooks, R. M. (2015). Electrocatalytic Amplification of Nanoparticle Collisions at Electrodes Modified with Polyelectrolyte Multilayer Films. Langmuir, 31(2), 876-885. https://doi.org/10.1021/la5043124

Dery, L., Dery, S., Gross, E., & Mandler, D. (2023). Influence of Charged Self-Assembled Monolayers on Single Nanoparticle Collision. Analytical Chemistry, 95(5), 2789-2795. https://doi.org/10.1021/acs.analchem.2c04081

Ivandini, T. A., Rao, T. N., Fujishima, A., & Einaga, Y. (2006). Electrochemical oxidation of oxalic acid at highly boron-doped diamond electrodes. Analytical chemistry, 78(10), 3467-3471. https://doi.org/10.1021/ac052029x

Ivandini, T. A., Saepudin, E., Wardah, H., Harmesa, Dewangga, N., & Einaga, Y. (2012). Development of a biochemical oxygen demand sensor using gold-modified boron doped diamond electrodes. Analytical chemistry, 84(22), 9825-9832. https://doi.org/10.1021/ac302090y.

Ivandini, T. A. & Einaga, Y. (2013). Electrochemical detection of selenium (IV) and (VI) at gold-modified diamond electrodes. Electrocatalysis, 4, 367-374. https://doi.org/10.1007/s12678-013-0169-7

Ivandini, T. A. & Einaga, Y. (2021). Electrochemical Sensing Applications Using Diamond Microelectrodes. Bulletin of Chemical Society of Japan, 94, 2838-2847. https://doi.org/10.1246/bcsj.20210296

Ivandini, T. A., Saepudin, E. & Einaga, Y. (2015). Yeast-based biochemical oxygen demand sensors using Gold-modified boron-doped diamond electrodes. Analytical Sciences, 31(7), 643-649. https://doi.org/10.2116/analsci.31.643

Jamkhande, P. G., Ghule, N. W., Bamer, A. H., & Kalaskar, M. G. (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 53, 101174. https://doi.org/10.1016/j.jddst.2019.101174

Jiang, Q., Peng, Z., Xie, X., Du, K., Hu, G., & Liu, Y. (2011). Preparation of high active Pt/C cathode electrocatalyst for direct methanol fuel cell by citrate-stabilized method. Transactions of Nonferrous Metals Society of China, 21(1), 127-132. https://doi.org/10.1016/S1003-6326(11)60688-2

Jung, Y., Ju, I. G., Choe, Y. H., Kim, Y., Park, S., Hyun, Y.-M., Oh, M. S., & Kim, D. (2019). Hydrazine Exposé: The Next-Generation Fluorescent Probe. ACS Sensors, 4(2), 441-449. https://doi.org/10.1021/acssensors.8b01429

Kellon, J. E., Young, S. L., & Hutchison, J. E. (2019). Engineering the Nanoparticle–Electrode Interface. Chemistry of Materials, 31(8), 2685-2701. https://doi.org/10.1021/acs.chemmater.8b04977

Kuhlbusch, T. A., Asbach, C., Fissan, H., Göhler, D., & Stintz, M. (2011). Nanoparticle exposure at nanotechnology workplaces: A review. Particle and Fibre Toxicology, 8(1), 22. https://doi.org/10.1186/1743-8977-8-22

Kuhlbusch, T. A. J., Neumann, S., & Fissan, H. (2004). Number Size Distribution, Mass Concentration, and Particle Composition of PM 1 , PM 2.5 , and PM 10 in Bag Filling Areas of Carbon Black Production. Journal of Occupational and Environmental Hygiene, 1(10), 660-671. https://doi.org/10.1080/15459620490502242

Miao, R. & Compton, R. G. (2021). The electro-oxidation of hydrazine: a self-inhibiting reaction. The Journal of Physical Chemistry Letters, 12(6), 1601-1605. https://doi.org/10.1021/acs.jpclett.1c00070

Muharam, S., Jiwanti, P. K., Gunlazuardi, J., Einaga, Y., & Ivandini, T. A. (2019). Electrochemical oxidation of palmitic acid solution using boron-doped diamond electrodes. Diamond and Related Materials, 99, 107464. https://doi.org/10.1016/j.diamond.2019.107464.

Navalón, S. & García, H. (2016). Nanoparticles for Catalysis. Nanomaterials, 6(7), 123. https://doi.org/10.3390/nano6070123

Ndolomingo, M. J., Bingwa, N., & Meijboom, R. (2020). Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts. Journal of Materials Science, 55(15), 6195-6241. https://doi.org/10.1007/s10853-020-04415-x

Pino, F., Ivandini, T. A., Nakata, K., Fujishima, A., Merkoçi, A., Einaga, Y. (2015). Magnetic enzymatic platform for organophosphate pesticide detection using boron-doped diamond electrodes. Analytical Sciences, 31(10), 1061-1068. https://doi.org/10.2116/analsci.31.1061

Qiu, X., Tang, H., Dong, J., Wang, C., & Li, Y. (2022). Stochastic Collision Electrochemistry from Single Pt Nanoparticles: Electrocatalytic Amplification and MicroRNA Sensing. Analytical Chemistry, 94(23), 8202-8208. https://doi.org/10.1021/acs.analchem.2c00116

Sardesai, N. P., Andreescu, D., & Andreescu, S. (2013). Electroanalytical Evaluation of Antioxidant Activity of Cerium Oxide Nanoparticles by Nanoparticle Collisions at Microelectrodes. Journal of the American Chemical Society, 135(45), 16770-16773. https://doi.org/10.1021/ja408087s

Smith, M., Scudiero, L., Espinal, J., McEwen, J. S., & Garcia-Perez, M. (2016). Improving the Deconvolution and Interpretation of XPS Spectra from Chars by Ab Initio Calculations. Carbon. Vol. 110. Elsevier Ltd. https://doi.org/10.1016/j.carbon.2016.09.012

Suzuki, A., Ivandini, T. A., Yoshimi, K., Fujishima, A., Oyama, G., Nakazato, T., ... & Einaga, Y. (2007). Fabrication, Characterization, and Application of Boron-Doped Diamond Microelectrodes for in Vivo Dopamine Detection. Analytical Chemistry, 79(22), 8608-8615. https://doi.org/10.1021/ac071519h

Watanabe, T., Ivandini, T. A., Makide, Y., Fujishima, A., & Einaga, Y. (2006). Selective detection method derived from a controlled diffusion process at metal-modified diamond electrodes. Analytical chemistry, 78(22), 7857-7860. https://doi.org/10.1021/ac060860j.

Wei, W., Gou, R., Shu, C., & Guo, Z. (2023). Revealing Controlled Etching Behaviors of Gold Nanobipyramids by Carbon Film Liquid Cell Transmission Electron Microscopy. The Journal of Physical Chemistry C, 127(16), 7808–7815. https://doi.org/10.1021/acs.jpcc.2c08530

Wu, G.-W., He, S.-B., Peng, H.-P., Deng, H.-H., Liu, A.-L., Lin, X.-H., Xia, X.-H., & Chen, W. (2014). Citrate-Capped Platinum Nanoparticle as a Smart Probe for Ultrasensitive Mercury Sensing. Analytical Chemistry, 86(21), 10955-10960. https://doi.org/10.1021/ac503544w

Xia, Y., Yang, H., & Campbell, C. T. (2013). Nanoparticles for Catalysis. Accounts of Chemical Research, 46(8), 1671-1672. https://doi.org/10.1021/ar400148q

Xiao, X. & Bard, A. J. (2007). Observing Single Nanoparticle Collisions at an Ultramicroelectrode by Electrocatalytic Amplification. Journal of the American Chemical Society, 129(31), 9610-9612. https://doi.org/10.1021/ja072344w

Xiao, X., Fan, F.-R. F., Zhou, J., & Bard, A. J. (2008). Current Transients in Single Nanoparticle Collision Events. Journal of the American Chemical Society, 130(49), 16669-16677. https://doi.org/10.1021/ja8051393

Xu, W., Zou, G., Hou, H., & Ji, X. (2019). Single Particle Electrochemistry of Collision. Small, 15(32), 1804908. https://doi.org/10.1002/smll.201804908

Xu, J., & Einaga, Y. (2020). Effect of sp2 species in a boron-doped diamond electrode on the electrochemical reduction of CO2. Electrochemistry Communications, 115, 106731. https://doi.org/10.1016/j.elecom.2020.106731.

You, J.-G., Shanmugam, C., Liu, Y.-W., Yu, C.-J., & Tseng, W.-L. (2017). Boosting catalytic activity of metal nanoparticles for 4-nitrophenol reduction: Modification of metal naoparticles with poly(diallyldimethylammonium chloride). Journal of Hazardous Materials, 324, 420-427. https://doi.org/10.1016/j.jhazmat.2016.11.007

Zhou, H., Park, J. H., Fan, F.-R. F., & Bard, A. J. (2012). Observation of Single Metal Nanoparticle Collisions by Open Circuit (Mixed) Potential Changes at an Ultramicroelectrode. Journal of the American Chemical Society, 134(32), 13212-13215. https://doi.org/10.1021/ja305573g

Downloads

Published

2023-06-29

How to Cite

Aliyah, Nurhidayat , R. R., Afiten Rahmin Sanjaya, Rahmat Wibowo, Einaga, Y., Saepudin, E. ., & Ivandini, T. A. (2023). Preparation of boron-doped diamond microelectrodes to determine the distribution size of platinum nanoparticles using current transient method. Environmental and Materials, 1(1). https://doi.org/10.61511/eam.v1i1.2023.117

Issue

Section

Articles

Citation Check