The impact of valproic acid administration: Effects on the growth of tongue cancer cells
DOI:
https://doi.org/10.61511/ajteoh.v2i1.2024.939Keywords:
cytotoxicity, HSC-3 cell, migration, proliferation valproic acid, viabilityAbstract
Background: Tongue cancer represents the predominant malignancy within the oral cavity (25 – 40% of squamous cell carcinoma), necessitating treatment modalities such as surgery, radiotherapy, and chemotherapy. Valproic acid, an antiepileptic medication, functions as a histone deacetylase inhibitor or activator of anti-tumor signaling pathways. Objective: To deepen our understanding of the effects of valproic acid on the viability, cytotoxicity, proliferation, and migration capabilities of HSC-3 cells. Method: This study employed an in vitro laboratory approach, exposing HSC-3 cells to valproic acid. The experimental groups included a negative control with culture media devoid of valproic acid, and treatment groups exposed to valproic acid at concentrations of 145 ppm, 180 ppm, and 355 ppm, respectively. Results: Significant differences (p-value < 0.05) were observed between HSC-3 cells treated with valproic acid (145 ppm, 180 ppm, and 355 ppm) and the control group in terms of viability, cytotoxicity, proliferation, and migration. Reduced cell viability, increased cytotoxicity, and decreased proliferation were noted. Migration assays indicated suppressed migration of HSC-3 cells. Conclusion: In summary, this study reveals that valproic acid exerts substantial effects on various aspects of HSC-3 cell behavior. It decreases cell viability, enhances cytotoxicity, suppresses proliferation, and inhibits cell migration. These findings highlight the potential of valproic acid as a therapeutic agent for tongue cancer by targeting crucial cellular processes involved in cancer progression. Further research and clinical trials are essential to confirm these effects and explore their application in cancer treatment strategies. Novelty/Originality of this article:: This study shows valproic acid has potential as a therapeutic agent for tongue cancer by decreasing cell viability, increasing cytotoxicity, suppressing proliferation, and inhibiting migration of HSC-3 cells. These findings introduce a new application of valproic acid as an anticancer agent, expanding the use of antiepileptic drugs. This study opens up opportunities for developing more effective tongue cancer therapies and encourages further research and clinical trials to validate these findings.
References
Ahrens, T. D., Timme, S., Hoeppner, J., Ostendorp, J., Hembach, S., Follo, M., et al. (2015). Selective inhibition of esophageal cancer cells by combination of HDAC inhibitors and azacytidine. Epigenetics, 10, 431-445. https://doi.org/10.1080/15592294.2015.1039216
Barberis, M., Klipp, E., Vanoni, M., & Alberghina, L. (2017, April). Cell size at S phase initiation: An emergent property of the G1/S network. PLOS Computational Biology, 3(4), 0649. https://doi.org/10.1371/journal.pcbi.0030064
Bordie, S. A., & Brandes, J. C. (2014, October). Could valproic acid be an effective anticancer agent? The evidence so far. Expert Review of Anticancer Therapy, 14(10), 1097. https://doi.org/10.1586/14737140.2014.940329
Cancer Treatment Centers of America. (2018). Tongue cancer.
Cha, I. H. (2007). Surgical treatment strategy for tongue cancer. Journal of Oral and Maxillofacial Surgery, 65, 24. https://doi.org/10.1016/j.joms.2007.06.072
Chen, H. P., Zhao, Y. T., & Zhao, T. Z. (2015). Histone deacetylases and mechanisms of regulation of gene expression (Histone deacetylases in cancer). Critical Reviews™ in Oncogenesis, 20(1-2), 35-47. https://doi.org/10.1615/CritRevOncog.2015012997
Eckschlager, T., Plch, J., Stiborova, M., & Hrabeta, J. (2017). Histone deacetylase inhibitors as anticancer drugs. International Journal of Molecular Sciences, 18(5), 5. https://doi.org/10.3390/ijms18071414
Fazlipur, A., & Masomi, S. A. (2013). Outcome of tongue cancer and early diagnosis. Journal of Clinical Research, 2, 22-24.
Hamidpour, R. (2017, December 23). Cancer epidemiology and prevention. iMedPub Journals, 2, 1. https://www.imedpub.com/insight-medical-publishing-articles.php
Harahap, W. A. (2014). Metilasi DNA dan peranannya pada kanker payudara sporadik. Majalah Kedokteran Andalas, 37(2), 22. https://jurnalmka.fk.unand.ac.id/index.php/art/article/view/211
Hoffman, M. (2014). The tongue (Human anatomy). WebMD.
Juliandi, B., Abematsu, M., & Nakashima, K. (2010). Chromatin remodeling in neural stem cell differentiation. Current Opinion in Neurobiology, 20, 408-415. https://doi.org/10.1016/j.conb.2010.04.001
Kementerian Kesehatan RI. (2015). Info datin pusat data dan informasi kementerian kesehatan RI: Situasi penyakit kanker. Jakarta, Indonesia. http://www.depkes.go.id/resources/download/pusdatin/infodatin/infodatin-kanker.pdf
Komariah, K., Kiranadi, B., Winanto, A., Manalu, W., & Handharyani, E. (2017). Pemberian asam valproat pada induk tikus bunting menghambat sintesis insulin pada sel otak anak tikus. Majalah Kedokteran Bandung, 49(3), 157. https://doi.org/10.15395/mkb.v49n3.1119
Komariah, K., Kiranadi, B., Winanto, A., Manalu, W., & Handharyani, E. (2017). Pemberian asam valproat pada induk tikus bunting menghambat sintesis insulin pada sel otak anak tikus. Majalah Kedokteran Bandung, 49(3), 162. https://doi.org/10.15395/mkb.v49n3.1119
Komariah, K., Manalu, W., Kiranadi, B., Winarto, A., Handharyani, E., & Roeslan, M. O. (2018). Valproic acid exposure of pregnant rats during organogenesis disturbs pancreas development in insulin synthesis and secretion of the offspring. Toxicology Research, 34(2), 173-182. https://doi.org/10.5487/TR.2018.34.2.173
Kusumawardani, B. (2006). Hubungan viabilitas sel, ekspresi protein p53 dan ki-67 pada kultur fibroblas gingiva manusia yang dipajan lipopolisakarida bakteri gram-negatif. Jurnal Ilmiah Dasar, 7(2), 126-132. https://jurnal.unej.ac.id/index.php/JID
Lee, S. H., Nam, H. J., Kang, H. J., Samuels, T. L., Johnston, N., & Lim, Y. C. (2015). Valproic acid suppresses the self-renewal and proliferation of head and neck cancer stem cells. Oncology Reports, 34, 2065. https://doi.org/10.3892/or.2015.4145
Li, Z., & Zhu, G. W. (2014). Targeting histone deacetylases for cancer therapy: From molecular mechanisms to clinical implication. International Journal of Biological Sciences, 10(7), 757-770. https://doi.org/10.7150%2Fijbs.9067
Liu, S., Liang, B., Jia, H., Jiao, Y., Pang, Z., & Huang, Y. (2017). Evaluation of cell death pathways initiated by antitumor drugs melatonin and valproic acid in bladder cancer cells. FEBS Open Bio, 7, 798-810. https://doi.org/10.1002/2211-5463.12223
Loh, J. W., Yeoh, G., Saunders, M., & Lim, Y. L. (2010, September). Uptake and cytotoxicity of chitosan nanoparticles in human liver cells. Toxicology and Applied Pharmacology, 249, 148-157. https://doi.org/10.1016/j.taap.2010.08.029
Ma, X. J., Wang, Y. S., Gu, W. P., & Zhao, X. (2017). The role and possible molecular mechanism of valproic acid in the growth of MCF-7 breast cancer cells. Croat Medical Journal, 58, 349-357. https://doi.org/10.3325/cmj.2017.58.349
Marliana, L. (2015). Karsinoma lidah. Fakultas Kedokteran Universitas Padjajaran.
Mologni, L., Cleris, L., Magistroni, V., Piazza, R., Boschelli, F., Formelli, F., & Passerini, C. G. (2009). Valproic acid enhances bosutinib cytotoxicity in colon cancer cells. Internationa Journal of Cancer, 124, 1990-1996. https://doi.org/10.1002/ijc.24158
Mottamal, M., Zheng, S., Huang, T. L., & Wang, G. (2015). Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 20(3), 3898-3941. https://doi.org/10.3390/molecules20033898
Naji, T., Zakeri, G., & Erfani, M. (2016, September 21-22). The effects of valproic acid on viability of MCF-7 cell line. CMBMS-16, Paris, France. https://doi.org/10.17758/uruae.ae0916406
Norton, N. S. (2007). Netter’s head and neck anatomy for dentistry. Philadelphia, PA: Saunders Elsevier.
Papi, A., Ferreri, A. M., Rocchi, P., Guerra, F., & Orlandi, M. (2010). Epigenetic modifiers as anticancer drugs: Effectiveness of valproic acid in neural crest-derived tumor cells. Anticancer Research, 30, 535. https://ar.iiarjournals.org/content/30/2/535.short
Potdar, P. D., & Shetti, A. U. (2016, February). Chitosan nanoparticles: An emerging weapon against cancer. MOJ Cell Science Report, 3(2), 39-40. https://doi.org/10.15406/mojcsr.2016.03.00049
Potdar, P. D., & Shetti, A. U. (2016). Evaluation of anti-metastatic effect of chitosan nanoparticles on esophageal cancer-associated fibroblasts. Journal of Cancer Metastasis Treat, 2, 259-267. https://www.oaepublish.com/articles/2394-4722.2016.25
Qi, L. F., Xu, Z. R., Yan, L., Jian, X., & Han, X. Y. (2005, September). In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells. World Journal of Gastroenterol, 11(33), 5136-5141. https://doi.org/10.3748%2Fwjg.v11.i33.5136
Safitri, U. H., Nawangsih, E. F., Noviyanti, N. D., Nur’aini, F., Apliani, D., & Haniastuti, T. (2016, December). Studi in vivo ekstrak etanolik ciplukan (Physalis angulata) dalam meningkatkan apoptosis sel kanker lidah. Majalah Kedokteran Gigi Indonesia, 2(3), 109-115. https://doi.org/10.22146/majkedgiind.10744
Saha, S. K., Yin, Y., Kim, K., Yang, G., Dayem, A. A., Choi, H. Y., et al. (2017). Valproic acid induces endocytosis-mediated doxorubicin internalization and shows synergistic cytotoxic effect in hepatocellular carcinoma cells. International Journal of Molecular Science, 18(1048), 2. https://doi.org/10.3390/ijms18051048
Sang, Z., Sun, Y., Ruan, H., Cheng, Y., Ding, X., & Yu, Y. (2016). Anticancer effects of valproic acid on oral squamous cell carcinoma via SUMOylation in vivo and in vitro. Experimental and Therapeutic Medicine, 12, 3979-3987. https://doi.org/10.3892/etm.2016.3907
Sirait, A. M. (2013). Faktor risiko tumor/kanker rongga mulut dan tenggorokan di Indonesia. Media Litbangkes, 23(3), 122-129.
Sun, L., & COY, D. H. (2014). Anti-convulsant drug valproic acid in cancers and in combination anticancer therapeutics. Modern Chemistry & Applications, 2, 1. https://doi.org/10.4172/2329-6798.1000118
Vasconcelos, M. G., Mafra, R. P., Vasconcelos, R. G., Costa de Medeiros, A. M., & Queiroz, L. M. G. (2014). Squamous cell carcinoma of the tongue: Clinical and morphological analysis of 57 cases and correlation with prognosis. Journal Brasileiro de Patologia e Medicina Laboratorial, 50(5), 359-363. https://doi.org/10.5935/1676-2444.20140040
World Health Organization, & IARC. (2012). All cancers (excluding non-melanoma skin cancer) estimated incidence, mortality and prevalence worldwide.
Wyllie, A., Donahue, V., Fischer, B., Hill, D., Kesey, J., & Manzow, S. (2000). Guide to cell proliferation and apoptosis methods (2nd ed.). Roche Diagnostics Corporation.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2024 Asian Journal of Toxicology, Environmental, and Occupational Health
This work is licensed under a Creative Commons Attribution 4.0 International License.