The impact of valproic acid administration: Effects on the growth of tongue cancer cells

Authors

  • Salma Rasiani Dental Education, Faculty of Dentistry, Trisakti University, Jakarta 11440, Indonesia

DOI:

https://doi.org/10.61511/ajteoh.v2i1.2024.939

Keywords:

cytotoxicity, HSC-3 cell, migration, proliferation valproic acid, viability

Abstract

Background: Tongue cancer represents the predominant malignancy within the oral cavity (25 – 40% of squamous cell carcinoma), necessitating treatment modalities such as surgery, radiotherapy, and chemotherapy. Valproic acid, an antiepileptic medication, functions as a histone deacetylase inhibitor or activator of anti-tumor signaling pathways. Objective: To deepen our understanding of the effects of valproic acid on the viability, cytotoxicity, proliferation, and migration capabilities of HSC-3 cells. Method: This study employed an in vitro laboratory approach, exposing HSC-3 cells to valproic acid. The experimental groups included a negative control with culture media devoid of valproic acid, and treatment groups exposed to valproic acid at concentrations of 145 ppm, 180 ppm, and 355 ppm, respectively. Results: Significant differences (p-value < 0.05) were observed between HSC-3 cells treated with valproic acid (145 ppm, 180 ppm, and 355 ppm) and the control group in terms of viability, cytotoxicity, proliferation, and migration. Reduced cell viability, increased cytotoxicity, and decreased proliferation were noted. Migration assays indicated suppressed migration of HSC-3 cells.  Conclusion: In summary, this study reveals that valproic acid exerts substantial effects on various aspects of HSC-3 cell behavior. It decreases cell viability, enhances cytotoxicity, suppresses proliferation, and inhibits cell migration. These findings highlight the potential of valproic acid as a therapeutic agent for tongue cancer by targeting crucial cellular processes involved in cancer progression. Further research and clinical trials are essential to confirm these effects and explore their application in cancer treatment strategies. Novelty/Originality of this article:: This study shows valproic acid has potential as a therapeutic agent for tongue cancer by decreasing cell viability, increasing cytotoxicity, suppressing proliferation, and inhibiting migration of HSC-3 cells. These findings introduce a new application of valproic acid as an anticancer agent, expanding the use of antiepileptic drugs. This study opens up opportunities for developing more effective tongue cancer therapies and encourages further research and clinical trials to validate these findings.

References

Ahrens, T. D., Timme, S., Hoeppner, J., Ostendorp, J., Hembach, S., Follo, M., et al. (2015). Selective inhibition of esophageal cancer cells by combination of HDAC inhibitors and azacytidine. Epigenetics, 10, 431-445. https://doi.org/10.1080/15592294.2015.1039216

Barberis, M., Klipp, E., Vanoni, M., & Alberghina, L. (2017, April). Cell size at S phase initiation: An emergent property of the G1/S network. PLOS Computational Biology, 3(4), 0649. https://doi.org/10.1371/journal.pcbi.0030064

Bordie, S. A., & Brandes, J. C. (2014, October). Could valproic acid be an effective anticancer agent? The evidence so far. Expert Review of Anticancer Therapy, 14(10), 1097. https://doi.org/10.1586/14737140.2014.940329

Cancer Treatment Centers of America. (2018). Tongue cancer.

Cha, I. H. (2007). Surgical treatment strategy for tongue cancer. Journal of Oral and Maxillofacial Surgery, 65, 24. https://doi.org/10.1016/j.joms.2007.06.072

Chen, H. P., Zhao, Y. T., & Zhao, T. Z. (2015). Histone deacetylases and mechanisms of regulation of gene expression (Histone deacetylases in cancer). Critical Reviews™ in Oncogenesis, 20(1-2), 35-47. https://doi.org/10.1615/CritRevOncog.2015012997

Eckschlager, T., Plch, J., Stiborova, M., & Hrabeta, J. (2017). Histone deacetylase inhibitors as anticancer drugs. International Journal of Molecular Sciences, 18(5), 5. https://doi.org/10.3390/ijms18071414

Fazlipur, A., & Masomi, S. A. (2013). Outcome of tongue cancer and early diagnosis. Journal of Clinical Research, 2, 22-24.

Hamidpour, R. (2017, December 23). Cancer epidemiology and prevention. iMedPub Journals, 2, 1. https://www.imedpub.com/insight-medical-publishing-articles.php

Harahap, W. A. (2014). Metilasi DNA dan peranannya pada kanker payudara sporadik. Majalah Kedokteran Andalas, 37(2), 22. https://jurnalmka.fk.unand.ac.id/index.php/art/article/view/211

Hoffman, M. (2014). The tongue (Human anatomy). WebMD.

Juliandi, B., Abematsu, M., & Nakashima, K. (2010). Chromatin remodeling in neural stem cell differentiation. Current Opinion in Neurobiology, 20, 408-415. https://doi.org/10.1016/j.conb.2010.04.001

Kementerian Kesehatan RI. (2015). Info datin pusat data dan informasi kementerian kesehatan RI: Situasi penyakit kanker. Jakarta, Indonesia. http://www.depkes.go.id/resources/download/pusdatin/infodatin/infodatin-kanker.pdf

Komariah, K., Kiranadi, B., Winanto, A., Manalu, W., & Handharyani, E. (2017). Pemberian asam valproat pada induk tikus bunting menghambat sintesis insulin pada sel otak anak tikus. Majalah Kedokteran Bandung, 49(3), 157. https://doi.org/10.15395/mkb.v49n3.1119

Komariah, K., Kiranadi, B., Winanto, A., Manalu, W., & Handharyani, E. (2017). Pemberian asam valproat pada induk tikus bunting menghambat sintesis insulin pada sel otak anak tikus. Majalah Kedokteran Bandung, 49(3), 162. https://doi.org/10.15395/mkb.v49n3.1119

Komariah, K., Manalu, W., Kiranadi, B., Winarto, A., Handharyani, E., & Roeslan, M. O. (2018). Valproic acid exposure of pregnant rats during organogenesis disturbs pancreas development in insulin synthesis and secretion of the offspring. Toxicology Research, 34(2), 173-182. https://doi.org/10.5487/TR.2018.34.2.173

Kusumawardani, B. (2006). Hubungan viabilitas sel, ekspresi protein p53 dan ki-67 pada kultur fibroblas gingiva manusia yang dipajan lipopolisakarida bakteri gram-negatif. Jurnal Ilmiah Dasar, 7(2), 126-132. https://jurnal.unej.ac.id/index.php/JID

Lee, S. H., Nam, H. J., Kang, H. J., Samuels, T. L., Johnston, N., & Lim, Y. C. (2015). Valproic acid suppresses the self-renewal and proliferation of head and neck cancer stem cells. Oncology Reports, 34, 2065. https://doi.org/10.3892/or.2015.4145

Li, Z., & Zhu, G. W. (2014). Targeting histone deacetylases for cancer therapy: From molecular mechanisms to clinical implication. International Journal of Biological Sciences, 10(7), 757-770. https://doi.org/10.7150%2Fijbs.9067

Liu, S., Liang, B., Jia, H., Jiao, Y., Pang, Z., & Huang, Y. (2017). Evaluation of cell death pathways initiated by antitumor drugs melatonin and valproic acid in bladder cancer cells. FEBS Open Bio, 7, 798-810. https://doi.org/10.1002/2211-5463.12223

Loh, J. W., Yeoh, G., Saunders, M., & Lim, Y. L. (2010, September). Uptake and cytotoxicity of chitosan nanoparticles in human liver cells. Toxicology and Applied Pharmacology, 249, 148-157. https://doi.org/10.1016/j.taap.2010.08.029

Ma, X. J., Wang, Y. S., Gu, W. P., & Zhao, X. (2017). The role and possible molecular mechanism of valproic acid in the growth of MCF-7 breast cancer cells. Croat Medical Journal, 58, 349-357. https://doi.org/10.3325/cmj.2017.58.349

Marliana, L. (2015). Karsinoma lidah. Fakultas Kedokteran Universitas Padjajaran.

Mologni, L., Cleris, L., Magistroni, V., Piazza, R., Boschelli, F., Formelli, F., & Passerini, C. G. (2009). Valproic acid enhances bosutinib cytotoxicity in colon cancer cells. Internationa Journal of Cancer, 124, 1990-1996. https://doi.org/10.1002/ijc.24158

Mottamal, M., Zheng, S., Huang, T. L., & Wang, G. (2015). Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 20(3), 3898-3941. https://doi.org/10.3390/molecules20033898

Naji, T., Zakeri, G., & Erfani, M. (2016, September 21-22). The effects of valproic acid on viability of MCF-7 cell line. CMBMS-16, Paris, France. https://doi.org/10.17758/uruae.ae0916406

Norton, N. S. (2007). Netter’s head and neck anatomy for dentistry. Philadelphia, PA: Saunders Elsevier.

Papi, A., Ferreri, A. M., Rocchi, P., Guerra, F., & Orlandi, M. (2010). Epigenetic modifiers as anticancer drugs: Effectiveness of valproic acid in neural crest-derived tumor cells. Anticancer Research, 30, 535. https://ar.iiarjournals.org/content/30/2/535.short

Potdar, P. D., & Shetti, A. U. (2016, February). Chitosan nanoparticles: An emerging weapon against cancer. MOJ Cell Science Report, 3(2), 39-40. https://doi.org/10.15406/mojcsr.2016.03.00049

Potdar, P. D., & Shetti, A. U. (2016). Evaluation of anti-metastatic effect of chitosan nanoparticles on esophageal cancer-associated fibroblasts. Journal of Cancer Metastasis Treat, 2, 259-267. https://www.oaepublish.com/articles/2394-4722.2016.25

Qi, L. F., Xu, Z. R., Yan, L., Jian, X., & Han, X. Y. (2005, September). In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells. World Journal of Gastroenterol, 11(33), 5136-5141. https://doi.org/10.3748%2Fwjg.v11.i33.5136

Safitri, U. H., Nawangsih, E. F., Noviyanti, N. D., Nur’aini, F., Apliani, D., & Haniastuti, T. (2016, December). Studi in vivo ekstrak etanolik ciplukan (Physalis angulata) dalam meningkatkan apoptosis sel kanker lidah. Majalah Kedokteran Gigi Indonesia, 2(3), 109-115. https://doi.org/10.22146/majkedgiind.10744

Saha, S. K., Yin, Y., Kim, K., Yang, G., Dayem, A. A., Choi, H. Y., et al. (2017). Valproic acid induces endocytosis-mediated doxorubicin internalization and shows synergistic cytotoxic effect in hepatocellular carcinoma cells. International Journal of Molecular Science, 18(1048), 2. https://doi.org/10.3390/ijms18051048

Sang, Z., Sun, Y., Ruan, H., Cheng, Y., Ding, X., & Yu, Y. (2016). Anticancer effects of valproic acid on oral squamous cell carcinoma via SUMOylation in vivo and in vitro. Experimental and Therapeutic Medicine, 12, 3979-3987. https://doi.org/10.3892/etm.2016.3907

Sirait, A. M. (2013). Faktor risiko tumor/kanker rongga mulut dan tenggorokan di Indonesia. Media Litbangkes, 23(3), 122-129.

Sun, L., & COY, D. H. (2014). Anti-convulsant drug valproic acid in cancers and in combination anticancer therapeutics. Modern Chemistry & Applications, 2, 1. https://doi.org/10.4172/2329-6798.1000118

Vasconcelos, M. G., Mafra, R. P., Vasconcelos, R. G., Costa de Medeiros, A. M., & Queiroz, L. M. G. (2014). Squamous cell carcinoma of the tongue: Clinical and morphological analysis of 57 cases and correlation with prognosis. Journal Brasileiro de Patologia e Medicina Laboratorial, 50(5), 359-363. https://doi.org/10.5935/1676-2444.20140040

World Health Organization, & IARC. (2012). All cancers (excluding non-melanoma skin cancer) estimated incidence, mortality and prevalence worldwide.

Wyllie, A., Donahue, V., Fischer, B., Hill, D., Kesey, J., & Manzow, S. (2000). Guide to cell proliferation and apoptosis methods (2nd ed.). Roche Diagnostics Corporation.

Downloads

Published

2024-07-31

How to Cite

Rasiani, S. (2024). The impact of valproic acid administration: Effects on the growth of tongue cancer cells. Asian Journal of Toxicology, Environmental, and Occupational Health, 2(1), 14–26. https://doi.org/10.61511/ajteoh.v2i1.2024.939

Issue

Section

Articles

Citation Check