Potential of nanotechnology-based nanomaterials and biochar for tofu wastewater filtration: A review on clean water sustainability
DOI:
https://doi.org/10.61511/whem.v2i1.2025.1653Keywords:
nanomaterials & biochar, tofu liquid waste filtration, clean waterAbstract
Background: Water pollution, driven by industrial activities and population growth, increasingly contaminates water sources, threatening clean water supply. Tofu wastewater, rich in organic pollutants, exacerbates this issue, highlighting the need for sustainable, effective water treatment solutions. Methods: This study uses a literature review method, analyzing journals, articles, and scientific publications to explore nanomaterials and biochar for efficient tofu wastewater treatment and improving water quality in Semarang City. Findings: The filtration system using biochar, CNT, TiO₂, and ZVI significantly reduces contaminants in water, enhancing water quality. Each material contributes uniquely, improving adsorption, photocatalysis, and overall filtration efficiency for heavy metals and organic compounds. Carbon nanotubes (CNTs), zero-valent iron (ZVI), and titanium dioxide (TiO2) exhibit high efficiency in environmental remediation, offering cost-effective, sustainable solutions despite challenges like toxicity and mobility. The study demonstrates the potential of nanomaterials like CNTs, ZVI, and TiO2 for enhanced environmental remediation, particularly in wastewater treatment. Their synergistic use improves contaminant removal, offering sustainable solutions with significant efficiency gains. Conclusion: In conclusion, integrating nanotechnology and biochar for tofu wastewater treatment presents a sustainable, scalable solution that advances both environmental remediation and technological innovation, aligning with SDGs and enhancing water quality management efforts. Novelty/Originality of this article: The novelty lies in combining nanomaterials and biochar for efficient tofu wastewater treatment, enhancing filtration and sustainability in water quality management.
References
Ajith, M. P., & Rajamani, P. (2021). Nanotechnology for Water Purification – Current Trends and Challenges. Journal of Nanotechnology and Nanomaterials, 2(2), 88–91. https://doi.org/10.33696/nanotechnol.2.025
Anis Khuriyah, F., Salma Nabila, A., Billah, Tasim, Nandini, A., Studi Teknik Kimia, P., & Teknik, F. (2023). Pengolahan Limbah Cair Industri Tahu Secara Aerob Menggunakan Lumpur Aktif. Seminar Nasional Teknik Kimia Soebardjo Brotohardjono Xix, 60294(1), 8706369. Http://Snsb.Upnjatim.Ac.Id/
Annan, E., Agyei-Tuffour, B., Bensah, Y. D., Konadu, D. S., Yaya, A., Onwona-Agyeman, B., & Nyankson, E. (2018). Application of clay ceramics and nanotechnology in water treatment: A review. Cogent Engineering, 5(1), 1–35. https://doi.org/10.1080/23311916.2018.1476017
Artiningsih, Mardiansjah, F. H., Anas, N., & Khairunisa, M. U. (2018). Kajian Kinerja Layanan Sanitasi Di Kota Semarang. Riptek, 12(2), 69–78. https://riptek.semarangkota.go.id/index.php/riptek/article/view/2
Ajien, A., Idris, J., Md Sofwan, N., Husen, R., & Seli, H. (2023). Coconut shell and husk biochar: A review of production and activation technology, economic, financial aspect and application. In Waste Management and Research (Vol. 41, Issue 1, pp. 37–51). SAGE Publications Ltd. https://doi.org/10.1177/0734242X221127167
Armaković, S. J., Savanović, M. M., & Armaković, S. (2023). Titanium Dioxide as the Most Used Photocatalyst for Water Purification: An Overview. In Catalysts (Vol. 13, Issue 1). MDPI. https://doi.org/10.3390/catal13010026
Arora, B., & Attri, P. (2020). Carbon nanotubes (CNTs): A potential nanomaterial for water purification. In Journal of Composites Science (Vol. 4, Issue 3). MDPI AG. https://doi.org/10.3390/jcs4030135
Bisht, M., Pooja, L. R., Prakash, P., & Patel, P. K. (2024). A review on nanotechnology applications for agriculture and water quality management. December. https://doi.org/10.53550/EEC.2024.v30i07s.054
El-Gohary, R. M., El-Shafai, N. M., El-Mehasseb, I. M., Ghamry, H. I., Alshahrani, M. Y., & Beltagi, A. M. (2025). Design plasmonic nanostructure of silicon dioxide and titanium dioxide loaded on a nano surface for clean water production through photocatalysis and electrochemical techniques. Materials Research Bulletin, 182(May 2024). https://doi.org/10.1016/j.materresbull.2024.113120
Ejike David Ugwuanyi, Zamathula Queen Sikhakhane Nwokediegwu, Michael Ayorinde Dada, Michael Tega Majemite, & Alexander Obaigbena. (2024). The impact of nanomaterials in enhancing wastewater treatment processes: A review. Magna Scientia Advanced Research and Reviews, 10(1), 273–285. https://doi.org/10.30574/msarr.2024.10.1.0030
Fajar, G. I. (2017). Peran Nanomaterial di Dalam Pengolahan Air. Research Gate, December, 1–8. https://doi.org/10.5281/zenodo.1134225
Febrianti, D. D., Pratama, M. M. N., Saputro, R. S. D., Elysiawati, S. S., & Radianto, D. O. (2024). Inovasi Nanoteknologi Dalam Pemurnian Air Minum: Potensi Dan Tantangan Dalam Praktek Teknik Lingkungan. Jurnal Sains Student Research, 2(2), 97–103. https://doi.org/10.61722/jssr.v2i2.1178
Furqonati, L., Fadilah, F. N., Fitria Ayu Prayekti, R., Kartika Putri, A., & Rohmah, J. (2024). Penggunaan Filtrasi Sebagai Teknologi dalam Pengolahan Limbah Tahu di Desa Sepande Sidoarjo. Naturalis: Jurnal Penelitian Pengelolaan Sumber Daya Alam Dan Lingkungan, 13(1), 71–76. https://doi.org/10.31186/naturalis.13.1.32358
Gu, X., Guo, P., Li, Z., Xu, X., Cao, Y., Yang, G., Kuang, C., Li, X., Qing, Y., & Wu, Y. (2024). A Multifunctional Coconut Shell Biochar Modified By Titanium Dioxide For Heavy Metal Removal In Water/Soil And Tetracycline Degradation. Journal Of Cleaner Production, 482. Https://Doi.Org/10.1016/J.Jclepro.2024.144192
Guerra, F. D., Attia, M. F., Whitehead, D. C., & Alexis, F. (2018). Nanotechnology for environmental remediation: Materials and applications. Molecules, 23(7), 1–23. https://doi.org/10.3390/molecules23071760
Irawan, A., Rahmayetty, Kartika Dewi, N., & Utami, S. (2016). PENGARUH AKTIVATOR KIMIA PADA PERFORMASI BIOADSORBEN DARI KARBON TEMPURUNG KELAPA SEBAGAI PENJERNIH AIR SUMUR. Jurnal TEKNIKA, 12(1), 103–112. https://doi.org/https://doi.org/10.36055/tjst.v12i1.6620
Kasman, M., Riyanti, A., Sy, S., & Ridwan, M. (2018). Reduksi pencemar limbah cair industri tahu dengan tumbuhan melati air (Echinodorus palaefolius) dalam sistem kombinasi constructed wetland dan filtrasi. Jurnal Litbang Industri, 8(1), 39. https://doi.org/10.24960/jli.v8i1.3832.39-46
Li, H., Wang, X., Tan, L., Li, Q., Zhang, C., Wei, X., Wang, Q., Zheng, X., & Xu, Y. (2022). Coconut shell and its biochar as fertilizer amendment applied with organic fertilizer: Efficacy and course of actions on eliminating antibiotic resistance genes in agricultural soil. Journal of Hazardous Materials, 437. https://doi.org/10.1016/j.jhazmat.2022.129322
Liu, Y., Weng, Z., Han, B., Guo, Z., Tian, H., Tang, Y., Cai, Y., & Yang, Z. (2023). Recent studies on the comprehensive application of biochar in multiple environmental fields. In Journal of Cleaner Production (Vol. 421). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2023.138495
Maulana, Moh. R., & Marsono, B. D. (2021). Penerapan Teknologi Membran Untuk Mengolah Limbah Cair Industri Tahu (Studi Kasus: Ukm Sari Bumi, Kabupaten Sumedang). Jurnal Teknik Its, 10(2). Https://Doi.Org/10.12962/j23373539.v10i2.63453
Mukhopadhyay, R., Sarkar, B., Khan, E., Alessi, D. S., Biswas, J. K., Manjaiah, K. M., Eguchi, M., Wu, K. C. W., Yamauchi, Y., & Ok, Y. S. (2022). Nanomaterials for sustainable remediation of chemical contaminants in water and soil. Critical Reviews in Environmental Science and Technology, 52(15), 2611–2660. https://doi.org/10.1080/10643389.2021.1886891
Nguyen, G. T., Nguyen, U. T. T., Do, M. H., Nguyen, D. Van, Trieu, Q. A., & Bui, T. H. (2024). Effective Adsorption Of Gold From Electronic Waste By Acid Leaching Solution Using Zero-Valent Iron Microparticles Modified–Biochar. Journal Of Environmental Chemical Engineering, 12(2). Https://Doi.Org/10.1016/J.Jece.2024.112063
Nursanti A. M. Syafira A., P. (2022). Studi Literatur: Perkembangan Nanomaterial. Berkala Fisika, 25(3), 111–121. https://ejournal.undip.ac.id/index.php/berkala_fisika/article/view/50741
Pradana, A. (2023). Transformasi Sistem Pangan Berkelanjutan di Kota Semarang melalui Policy Brief. Jurnal Riptek, 17(1), 61–70. https://doi.org/10.35475/riptek.v17i1.197
Prasetiyo, K. W. (2020). APLIKASI NANOTEKNOLOGI DALAM INDUSTRI HASIL HUTAN (Application Of Nanotechnology In Forest Products Industry). Jurnal Akar, 9(1), 13–24. https://doi.org/10.36985/jar.v9i1.189
Ramadhan, F., Prayitno, W., Wahyudi, R., Studi Teknik Lingkungan, P., Nahdlatul Ulama Kalimantan Barat, U., & Raya, K. (2022). Analisis Kebutuhan Air Minum Kelurahan Sungai Sengkuang Yang Bersumber Dari Spam Ikk Sungai Sengkuang. Journal Teknologi Infrastruktur, 1(2).
Ramadhan, T. (2017). Pemahaman Masyarakat Mengenai Dampak Pembangunan Hunianterkait Global Warming Dan Penerapan Green Building. Temu Ilmiah Ikatan Peneliti Lingkungan Binaan Indonesia 6, G035–G042.
Ravi, M., Venkatesan, R., Thangavel, G., Palanisami, J., Deepa, S., & Kim, S. C. (2024). Advancing environmental remediation through tailored TiO2 nanomaterials in water and air purification. Inorganic Chemistry Communications, 170(P1), 113171. https://doi.org/10.1016/j.inoche.2024.113171
Rizki, E., & Agung, T. (2021). Degradasi Limbah Tahu Dengan Koagulasi Flokulasi Alumunium Sulfat Dan Fotokatalis TiO2 Dalam Tangki Berpengaduk. Journal EnviroUS, 2, 56–60. https://doi.org/10.33005/envirous.v2i1.66
Reihanifar, M., Takallou, A., Taheri, M., Gholizadeh Lonbar, A., Ahmadi, M., & Sharifi, A. (2024). Nanotechnology advancements in groundwater remediation: A comprehensive analysis of current research and future prospects. Groundwater for Sustainable Development, 27(September). https://doi.org/10.1016/j.gsd.2024.101330
Rudi, F., Abu Bakar, N. K., Mohd Kassim, N. A., Knight, V. F., Shukor, M. F. A., & Norrrahim, M. N. F. (2024). Recent Advances in Nanomaterials-Based Adsorbents for Organophosphorus Contaminant Removal in Water: An Overview. Asian Journal of Water, Environment and Pollution, 21(1), 17–24. https://doi.org/10.3233/AJW240004
Roy, S., & Kalita, I. (2023). Advances in Agronomy. In Advances in Agronomy (Issue June). https://doi.org/10.22271/ed.book.2149
Sajid, M., Asif, M., Baig, N., Kabeer, M., Ihsanullah, I., & Mohammad, A. W. (2022). Carbon nanotubes-based adsorbents: Properties, functionalization, interaction mechanisms, and applications in water purification. In Journal of Water Process Engineering (Vol. 47). Elsevier Ltd. https://doi.org/10.1016/j.jwpe.2022.102815
S R, R. (2024). A Comprehensive Review on Characterization, Synthesis, of Nanomaterials and Its Application in Water Treatment. International Scientific Journal of Engineering and Management, 03(04), 1–9. https://doi.org/10.55041/isjem01584
Sanjana, W. W. Y., & Dahanayake, D. (2023). An Overview of Nanomaterials in Water Purification, Health Effects and Future Aspects. August 2023, 51–62.
Simanjuntak, S., Zai, E. O., & Tampubolon, M. H. (2021). Analisa Kebutuhan Air Bersih Di Kota Medan Sumatera Utara. In Jurnal Visi Eksakta (Jvieks) (Vol. 2, Issue 2). Https://Ejournal.Uhn.Ac.Id/Index.Php/Eksakta/186
Singh, K. K., Singh, A., & Rai, S. (2021). A study on nanomaterials for water purification. Materials Today: Proceedings, 51, 1157–1163. https://doi.org/10.1016/j.matpr.2021.07.116
Shukla, B. K., Sharma, P. K., Yadav, H., Singh, S., Tyagi, K., Yadav, Y., Rajpoot, N. K., Rawat, S., & Verma, S. (2024). Advanced membrane technologies for water treatment: utilization of nanomaterials and nanoparticles in membranes fabrication. In Journal of Nanoparticle Research (Vol. 26, Issue 9). Springer Netherlands. https://doi.org/10.1007/s11051-024-06117-w
Sustich, R. C., Shannon, M., & Pianfetti, B. (2014). Introduction: Water Purification in the Twenty-First Century-Challenges and Opportunities. In Nanotechnology Applications for Clean Water: Solutions for Improving Water Quality: Second Edition (Second Edi). Elsevier Inc. https://doi.org/10.1016/B978-1-4557-3116-9.00052-4
Veréb, G., Kassai, P., Nascimben Santos, E., Arthanareeswaran, G., Hodúr, C., & László, Z. (2020). Intensification of the ultrafiltration of real oil-contaminated (produced) water with pre-ozonation and/or with TiO2, TiO2/CNT nanomaterial-coated membrane surfaces. Environmental Science and Pollution Research, 27(18), 22195–22205. https://doi.org/10.1007/s11356-020-08047-1
Wibowo, Y. G., Ramadan, B. S., & Andriansyah, M. (2019). Simple Technology to Convert Coconut Shell Waste into Biochar; A Green Leap Towards Achieving Environmental Sustainability. Jurnal Presipitasi : Media Komunikasi Dan Pengembangan Teknik Lingkungan, 16(2), 58. https://doi.org/10.14710/presipitasi.v16i2.58-64
Yadav, N., Singh, S., Saini, O., & Srivastava, S. (2022). Technological advancement in the remediation of heavy metals employing engineered nanoparticles: A step towards cleaner water process. Environmental Nanotechnology, Monitoring and Management, 18(August). https://doi.org/10.1016/j.enmm.2022.100757
Yang, X., Zhao, R., Zhan, H., Zhao, H., Duan, Y., & Shen, Z. (2024). Modified Titanium dioxide-based photocatalysts for water treatment: Mini review. Environmental Functional Materials. https://doi.org/10.1016/j.efmat.2024.07.002
Yu, P., Tan, J., Wang, Z., Zhang, C., Wang, Q., Zhu, K., Peng, C., Xiao, X., & Huang, W. (2024). Enhanced electron transfer pathway of zero-valent iron particles immobilized on coconut shell derived carbon for prolonged Cr(VI) removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 682. https://doi.org/10.1016/j.colsurfa.2023.132863
Zhu, L., Chattopadhyay, S., Elijah Akanbi, O., Lobo, S., Panthi, S., Malayil, L., Craddock, H. A., Allard, S. M., Sharma, M., Kniel, K. E., Mongodin, E. F., Chiu, P. C., Sapkota, A., & Sapkota, A. R. (2023). Biochar and zero-valent iron sand filtration simultaneously removes contaminants of emerging concern and Escherichia coli from wastewater effluent. Biochar, 5(1). https://doi.org/10.1007/s42773-023-00240-y
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Dionezra Bagus Imanuel, Faatin Nisriinaa Zain, Belvannia Levina Celesta, Mochammad Choiril Muna

This work is licensed under a Creative Commons Attribution 4.0 International License.