Redesign of coconut grater blades to minimize coconut milk reduction using the reverse engineering method
DOI:
https://doi.org/10.61511/jipagi.v2i2.2334Keywords:
3D scanner, coconut, reverse engineering, solid edge, tooth graterAbstract
Background: Indonesia is one of the countries with the highest coconut production and productivity levels in the world. The use of coconut in Indonesia is often employed in the production of coconut milk, both in households, small industries, and large industries. To produce coconut milk, grated coconut is required. Grated coconut is obtained from coconuts that have been grated using a grating machine. This study used a coconut grating machine available at Telkom University, which produces grated coconut with a significant reduction in coconut milk yield, namely 56.25% of the previous grated coconut weight. The study aims to reduce the reduction in coconut milk yield to achieve a more optimal result by using the Reverse Engineering method with the assistance of a 3D Scanner. Methods: This study employed a reverse engineering approach comprising systematic stages of field observation, data acquisition, 3D scanning, and component redesign to develop an optimized coconut grater. The redesigned model was then tested and compared with the existing grater to evaluate improvements in grating performance and coconut milk extraction efficiency. Findings: The 3D Scanner results were then processed using Solid Edge software, which functions to display the 3D design that can be analyzed and modified according to the research objectives. Once the necessary modifications were identified, the next step was the redesign process. The redesign process was carried out using Autodesk Fusion to redesign the new or proposed grater. A reduction of 28.33% was obtained, with a difference of 27.92% from the previous grater reduction. With a reduction of 27.92%, coconut milk production became more optimal compared to the previous results. Conclusion: This study concluded that redesigning the coconut greater using the Reverse Engineering method effectively reduced the coconut milk reduction rate from 56.25% to 28.33%, resulting in a 27.92% improvement in extraction efficiency. Novelty/Originality of this article: This study introduces an improved coconut greater design developed through the Reverse Engineering method using 3D scanning and CAD software, resulting in optimized grater tooth dimensions that significantly reduce coconut milk yield loss and enhance extraction efficiency.
References
Autodesk. (2024). What is Autodesk Fusion?. Autodesk. https://www.autodesk.com/solutions/what-is-fusion-360
Azlan, K. A., Omar, M. R., Hussin, M. S. F., Abdullah, M. I. H. C., & Chinniah, E. S. (2020). Measurement Accuracy Assessment for Laser Triangulation 3D Scanning Machine. International Journal of Recent Technology and Engineering (IJRTE), 8(6), 2789–2793. https://doi.org/10.35940/ijrte.F8394.038620
Belgiu, G., & Cărăuşu, C. (2018). Management of the Reverse Engineering Process in the Plastics Industry. Procedia - Social and Behavioral Sciences, 238(January), 729–736. https://doi.org/10.1016/j.sbspro.2018.04.056
Berger, M., Tagliasacchi, A., Seversky, L., Alliez, P., Guennebaud, G., Levine, J., Sharf, A., Silva, C., Seversky, L. M., Guennebaud, G., Levine, J. A., & Silva, C. T. (2016). Reconstruction from Point Clouds. Computer Graphics Forum, 0, 1–27. https://doi.org/10.1111/cgf.12802ï
Center for Agricultural Data and Information Systems. (2022). Outlook Kelapa 2022. In Pusat Data dan Sistem Informasi Pertanian, Sekretariat Jenderal - Kementerian Pertanian. Pusat Data dan Sistem Informasi Pertanian. https://satudata.pertanian.go.id/assets/docs/publikasi/Outlook_Kelapa_2022.pdf
Darma, D., Faisol, A., & Dahlia, A. S. (2020). Rancang Bangun dan Uji Kinerja Mesin Pemarut Singkong Tipe Silinder untuk Produksi Tepung Tapioka. Rekayasa, 13(3), 254–262. https://doi.org/10.21107/rekayasa.v13i3.7071
Gefalro, K., Widyasanti, A., & Nanda, M. A. (2023). Pengaruh Proses Pembekuan Daging Kelapa (Cocos nucifera L.) Terhadap Karakteristik Produk Kelapa Parut Kering. Journal of Tropical Agricultural Engineering and Biosystems-Jurnal Keteknikan Pertanian Tropis dan Biosistem, 11(2), 168-175. https://doi.org/10.21776/ub.jkptb.2023.011.02.06
Ghahremani, K., Safa, M., Yeung, J., Walbridge, S., Haas, C., & Dubois, S. (2015). Quality assurance for high-frequency mechanical impact (HFMI) treatment of welds using handheld 3D laser scanning technology. Welding in the World, 59(3), 391-400. https://doi.org/10.1007/s40194-014-0210-3
Gumilar, I., Farohi, F., Munarda, M., Bramanto, B., & Kartini, G. A. J. (2022). The Combined Use of Terrestrial Laser Scanner and Handheld 3D Scanner for 3D Modeling of Piping Instrumentation at Oil and Gas Company. Journal of Engineering & Technological Sciences, 54(6). https://doi.org/10.1080/09500693.2022.2032462
Hadi, Y., Purnomo, P., & Taneo, S. Y. M. (2022). Teknologi Tepat Guna Mesin Pemeras Santan untuk UMKM Es Puter Kelurahan Ngaglik Kota Batu. Jurnal Pengabdian Masyarakat Charitas, 2(02), 105-112. https://doi.org/10.25170/charitas.v2i02.2574
Haleem, A., Javaid, M., Singh, R. P., Rab, S., Suman, R., Kumar, L., & Khan, I. H. (2022). Exploring the potential of 3D scanning in Industry 4.0: An overview. International Journal of Cognitive Computing in Engineering, 3, 161-171. https://doi.org/10.1016/j.ijcce.2022.08.003
Helle, R. H., & Lemu, H. G. (2021). A case study on use of 3D scanning for reverse engineering and quality control. Materials Today: Proceedings, 45, 5255-5262. https://doi.org/10.1016/j.matpr.2021.01.828
Javaid, M., Haleem, A., Pratap Singh, R., & Suman, R. (2021). Industrial perspectives of 3D scanning: Features, roles and it’s analytical applications. Sensors International, 2. https://doi.org/10.1016/j.sintl.2021.100114
Kantaros, A., Ganetsos, T., & Petrescu, F. I. T. (2023). Three-Dimensional Printing and 3D Scanning: Emerging Technologies Exhibiting High Potential in the Field of Cultural Heritage. Applied Sciences (Switzerland), 13(8). https://doi.org/10.3390/app13084777
Khairunnisa, S. N., & Aisyah, Y. (2021). Cara Membuat Santan Kental, Sedang, dan Encer untuk Masakan. Kompas. https://www.kompas.com/food/read/2021/05/19/161600475/cara-membuat-santan-kental-sedang-dan-encer-untuk-masakan
Lee, Y. C., Lin, G., & Wang, M. J. J. (2014). Comparing 3D foot scanning with conventional measurement methods. Journal of Foot and Ankle Research, 7(1). https://doi.org/10.1186/s13047-014-0044-7
Lerebulan, C., Fatimah, F., & Pontoh, J. (2018). Rendemen Dan Total Fenolik Santan Kelapa Dalam Pada Berbagai Tingkat Kematangan. Jurnal MIPA, 7(1), 44-46. https://doi.org/10.35799/jm.7.1.2018.19283
Manane, M. E., Mangesa, D. P., & Riwu, D. B. (2021). Modifikasi alat pemarut kelapa sistem mekanis dengan mata pisau setengah lingkaran. LONTAR Jurnal Teknik Mesin Undana, 8(02), 35-40. https://doi.org/10.35508/ljtmu.v8i02.5944
Ministry of Foreign Affairs of the Republic of Indonesia. (2024). The growing popularity and export potential of coconut milk. Kementerian Luar Negeri Republik Indonesia.
Mitra, A. (2016). Fundamentals of quality control and improvement. John Wiley & Sons.
Mudzakir, M. Z., Abidin, H. Z., & Gumilar, I. (2017). Pemodelan 3D “Gedung Indonesia Menggugat” Menggunakan Teknologi Terrestrial Laser Scanner. ITB Indonesian Journal of Geospatial, 6(2), 72-95. https://journals.itb.ac.id/index.php/ijog/article/view/12717
Nasution, A., Santoso, A. B., & Al Rafi, R. (2022, December). Perbaikan Alat Parutan Kelapa dengan Menggunakan Metode Design For Manufacture and Assembly (DFMA). In Talenta Conference Series: Energy and Engineering (EE) (Vol. 5, No. 2, pp. 582-589). https://doi.org/10.32734/ee.v5i2.1623
Nurcahyo, A., & Djurdjani, D. (2021). Analisis Perbandingan Ketelitian Model 3D Menggunakan Lensa Normal dan Lensa Fisheye. JGISE: Journal of Geospatial Information Science and Engineering, 4(2), 132-139. https://doi.org/10.22146/jgise.67869
Otto, K. N., & Wood, K. L. (1998). Product Evolution: A Reverse Engineering and Redesign Methodology. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 10(4), 226–243. https://doi.org/10.1007/s001639870003
Permana, A. I., Kusnayat, A., & ... (2020). Perancangan Mesin Hybrid Pengolah Kelapa Menggunakan Metode Reverse Engineering. EProceeding of Engineering, 7(1), 1838–1845. https://repository.telkomuniversity.ac.id/pustaka/files/156991/jurnal_eproc/perancangan-mesin-hybrid-pengolah-kelapa-menggunakan-metode-reverse-engineering.pdf
Prades, A., Salum, U. N., & Pioch, D. (2016). New era for the coconut sector. What prospects for research? OCL - Oilseeds and Fats, Crops and Lipids, 23(6), 4–7. https://doi.org/10.1051/ocl/2016048
Prawiyogi, A. G., Sadiah, T. L., Purwanugraha, A., & Elisa, P. N. (2021). Penggunaan Media Big Book untuk Menumbuhkan Minat Membaca di Sekolah Dasar. Jurnal Basicedu, 5(1), 446–452. https://doi.org/10.31004/basicedu.v5i1.787
Ramadhan, F. R. K., & Fauzi, A. S. (2022, August). Design And Build A Coconut Grater Machine With A Capacity Of 20 Kg/Hour. In Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) (Vol. 6, No. 2, pp. 300-305). https://proceeding.unpkediri.ac.id/index.php/inotek/article/view/2601
Riyadi, F., & Mahmudi, H. (2021, August). Desain Gigi Parut Pada Mesin Pemarut Kelapa dan Pemeras Santan Serbaguna. In Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) (Vol. 5, No. 2, pp. 068-073). https://proceeding.unpkediri.ac.id/index.php/inotek/article/view/1015
Salehi, V., & Wang, S. (2019). Web-based visualization of 3D factory layout from hybrid modeling of CAD and point cloud on virtual globe DTX solution. Computer-Aided Design and Applications, 16(2), 243–255. https://doi.org/10.14733/cadaps.2019.243-255
Srivastava, J., & Kawakami, H. (2023). Systematic Review of Difference Between Topology Optimization and Generative Design. IFAC-PapersOnLine, 56(2), 6561–6568. https://doi.org/10.1016/j.ifacol.2023.10.307
Sutrisno, Permana, & Witjahjo. (2023). Rancang Bangun Mesin Pemeras Santan Kelapa. Poltek Manufaktur Bangka Belitung.
Tickoo, S. (2020). Solid Edge 2020 for Designers, 17th Edition (CADCIM, Ed.; 17th ed.). CADCIM.
Winneke, O. (2018, May 15). Siapkan Santan Segar dengan Cara Ini Agar Masakan Lebih Gurih Alami. detikFood. https://food.detik.com/info-kuliner/d-4020897/siapkan-santan-segar-dengan-cara-ini-agar-masakan-lebih-gurih-alami
Yao, A. W. L. (2005). Applications of 3D scanning and reverse engineering techniques for quality control of quick response products. International Journal of Advanced Manufacturing Technology, 26(11–12), 1284–1288. https://doi.org/10.1007/s00170-004-2116-5
Yu, F., Zeng, L., Pan, D., Sui, X., & Tang, J. (2020). Evaluating the accuracy of hand models obtained from two 3D scanning techniques. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-68457-6
Zhaohui Geng, B. B. (2017). Review of reverse engineering systems – current state of the art. Virtual and Physical Prototyping, 12(2), 161–172. https://doi.org/https://doi.org/10.1080/17452759.2017.1302787
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Hilma Efrina Lorenza

This work is licensed under a Creative Commons Attribution 4.0 International License.












