Biomass allocation and carbon partitioning in young teak trees: Implications for ecological modeling and sustainable resource management
DOI:
https://doi.org/10.61511/jcreco.v2i2.2495Keywords:
expansion factor, teak, root to shoot ratioAbstract
Background: Climate change, that is marked by improvement of earth’s surface temperature (global warming), is caused by human activities that increase the emission of greenhouse gasses to the atmosphere. These gases include CO2, N20, CH4, SF6, PFC, and HFC. Ignition of hydrocarbonic compounds such as fossil fuels (coal, petrol fuel, and natural gas) or biomass (wood) are human activity that could cause emission of greenhouse gases to the atmosphere and, further, global climate change. Methods: This study involved field-based observations with laboratory-based sample analysis. Materials used for this study consisted of 30 teak (Tectona grandis L. f.) consisting of 6 tree samples in each age group of 1 to 5 year old tree located within the KPH Balapulang area. Findings: Biomass root to shoot ratio based on main stem is about 0.1155-0.5048 (Average 0.2296), while based to surface biomass is about 0.1090-0.4317 (Average 0.1983). Carbon mass root to shoot ratio based on main stem is about 0.1159-0.5068 (Average 0.2320), while based to surface carbon mass is about 0.1111-0.4381 (Average 0.2030). Average expansion factor of biomass for age level I-V is 1.15, while average expansion factor of carbon mass for age level I-V is 1.13. Conclusion: The result of this study indicating that those ratios and factors quantify the proportion of root versus aboveground biomass or carbon and the multiplication of stem biomass or carbon to estimate total tree values. Novelty/Originality of this article: This study provides the quantitative data on root-to-shoot ratios, biomass and carbon mass expansion factors for teak (Tectona grandis L. f.) across different age classes.
References
Achmadi, S. S. (1990). Diktat Kimia Kayu. Pusat Antar Universitas. Institut Pertanian Bogor.
Adinugroho, W. C., Syahbani, I., T. Rengku, M., Arifin, Z., and Mukhaidil. (2006). Teknik Estimsi Kandungan Karbon Hutan Sekunder Bekas Kebakaran 1997/1998 di PT.Inhutani L, Batu Kampar, Kalimantan Timur. Kalimantan Timur: PSDA Loka Litbang Satwa Primata.
American Society for Testing Material. (1990). Standard Test Method For Total Ash Content of Activated Carbon. ASTM International.
Arunkumar, A. N., Warrier, K. C., & Warrier, R. R. (2024). The Timeless Legacy of Teak: Unveiling Its History, Importance, and Enduring Relevance. In Economically Important Trees: Origin, Evolution, Genetic Diversity and Ecology (pp. 173-205). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-5940-8_5
Błońska, E., Prażuch, W., & Lasota, J. (2023). Deadwood affects the soil organic matter fractions and enzyme activity of soils in altitude gradient of temperate forests. Forest Ecosystems, 10, 100115. https://doi.org/10.1016/j.fecs.2023.100115
Bonner, F. T. (1995). Measurement and Management of Tree Seed Moisture. Southern Forest Experiment Station. https://www.srs.fs.usda.gov/pubs/rp/rp_so177.pdf
Brow, S. (1997). Estimating biomass and biomass change of tropical forests. FAO Forestry paper, 134. https://www.fao.org/4/w4095e/w4095e00.htm
Chapman, S. B. (1976). Methods in Plant Ecology (2nd ed.). Blackwell Scientific Publisher.
Chen, K., Cai, Q., Zheng, N., Li, Y., Lin, C., & Li, Y. (2021, July). Forest carbon sink evaluation–An important contribution for carbon neutrality. In IOP Conference Series: Earth and Environmental Science (Vol. 811, No. 1, p. 012009). IOP Publishing. https://doi.org/10.1088/1755-1315/811/1/012009
Dewi, M. (2011). Model Persamaan Alometrik Massa Karbon Akar dan Root to Shoot Ratio Biomassa dan Massa Karbon Pohon Mangium (Acacia mangium wild) (Studi Kasus di BKPH Parung Panjang, KPH Bogor, Perum Perhutani Unit III, Jawa Barat dan Banten. Institut Pertanian Bogor. http://repository.ipb.ac.id/handle/123456789/47900
Ding, R., Nóbrega, R. L., & Prentice, I. C. (2025). Global Assessment of Environmental and Plant‐Trait Influences on Root: Shoot Biomass Ratios. Global Change Biology, 31(10), e70543. https://doi.org/10.1111/gcb.70543
Elias. (2010). Inovasi Metodologi dan Estimasi Cadangan Karbon dalam Hutan dalam Rangka Program Reduced Emissions from Deforestation and Degradation (REDD) Indonesia. Institut Pertanian Bogor. https://dri.ipb.ac.id/wp-content/uploads/2015/08/elias_dkk_288.pdf
Elias., Wistara, N. J., Dewi, M., & Purwitasari, H. (2010). Model persamaan massa karbon akar pohon dan root-shoot ratio massa karbon. Jurnal Manajemen Hutan Tropika, 16(3), 113-117. https://journal.ipb.ac.id/jmht/article/view/3173/2117
Guo, Y., Ren, Z., Wang, C., Zhang, P., Ma, Z., Hong, S., ... & He, X. (2024). Spatiotemporal patterns of urban forest carbon sequestration capacity: Implications for urban CO2 emission mitigation during China's rapid urbanization. Science of the Total Environment, 912, 168781. https://doi.org/10.1016/j.scitotenv.2023.168781
Haygreen, J. G., & Bowyer, J. L. (1982). Hasil Hutan dan Ilmu Kayu: Suatu Pengantar. Gajah Mada.
Heiskanen, J. (2006). Estimating aboveground tree biomass and leaf area index in a mountain birch forest using ASTER satellite data. International Journal of Remote Sensing, 27(6), 1135-1158. https://doi.org/10.1080/01431160500353858
Hiltbrunner, E., Arnaiz, J., & Körner, C. (2021). Biomass allocation and seasonal non-structural carbohydrate dynamics do not explain the success of tall forbs in short alpine grassland. Oecologia, 197(4), 1063-1077. https://doi.org/10.1007/s00442-021-04950-7
Kumar, S. (2025). Controlled feasibility study for moisture-based grouping of dried wood: use of near infrared spectroscopy and support vector machine classification. Journal of the Indian Academy of Wood Science, 1-9. https://doi.org/10.1007/s13196-025-00390-5
Kyrklund, B. (1990). The Potential of Forests and Forest Industry in Reducing Excess Atmospheric Carbon Dioxide. Food and Agriculture Organization. https://www.fao.org/4/u0700e/u0700e04.htm
Mandang, Y. I., & Pandit, I. K. N. (1997). Pedoman Identifikasi Jenis Kayu di Lapangan. Yayasan PROSEA.
Martawijaya, A., Kartasujana, I., Kadir, K., & Perwira, S. (1981). Atlas Kayu Indonesia (1st ed.). Balai Penelitian dan Penelitian Pertanian. https://online.fliphtml5.com/tocij/btmo/#google_vignette
Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., ... & Wagner, F. (2003). Good practice guidance for land use, land-use change and forestry. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/2018/03/GPG_LULUCF_FULLEN.pdf
Psistaki, K., Tsantopoulos, G., & Paschalidou, A. K. (2024). An overview of the role of forests in climate change mitigation. Sustainability, 16(14), 6089. https://doi.org/10.3390/su16146089
Raihan, A., Begum, R. A., Mohd Said, M. N., & Pereira, J. J. (2021). Assessment of carbon stock in forest biomass and emission reduction potential in Malaysia. Forests, 12(10), 1294. https://doi.org/10.3390/f12101294
Setiawan, A., Ramadhana, V. P., Kholifah, I. N., Maulana, A. I., Pamungkas, B. A., Arifin, S., ... & Wicakcono, K. P. (2024, February). Dynamics of species richness in understory deciduous teak forest (Tectona grandis). In IOP Conference Series: Earth and Environmental Science (Vol. 1299, No. 1, p. 012008). IOP Publishing. https://doi/org/10.1088/1755-1315/1299/1/012008
Shannon, V. L., Vanguelova, E. I., Morison, J. I. L., Shaw, L. J., & Clark, J. M. (2022). The contribution of deadwood to soil carbon dynamics in contrasting temperate forest ecosystems. European Journal of Forest Research, 141(2), 241-252. https://doi.org/10.1007/s10342-021-01435-3
Sreekumar, V. B., & Sanil, M. S. (2021). Teak biology and ecology. In The Teak Genome (pp. 67-81). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-79311-1_6
Sutaryo, D. (2009). Penghitungan Biomassa, Sebuah Pengantar untuk Studi Karbon dan Perdagangan Karbon. Wetlands International Indonesia Programme. https://msp.ipb.ac.id/wp-content/uploads/2023/09/Penghitungan-Biomassa.pdf
Thybring, E. E., & Fredriksson, M. (2023). Wood and moisture. In Springer handbook of wood science and technology (pp. 355-397). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-81315-4_7
Weng, J. H., Huang, M. Y., & Yang, Z. W. (2025). A high yield potential ideotype for irrigated rice: Rice plant types with short culms and long, upright leaves. Field Crops Research, 322, 109696. https://doi.org/10.1016/j.fcr.2024.109696
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2025 Ahmad Shofiyullah Zain

This work is licensed under a Creative Commons Attribution 4.0 International License.











