Prospects for Nuclear Power Plant Development in Indonesia: A DPSIR Framework Analysis for Sustainable Energy Transition, Economic Implications, and Environmental Considerations
DOI:
https://doi.org/10.61511/jbkl.v2i2.2025.1498Keywords:
climate change, DPSIR framework, energy security, nuclear power, power sector, sustainabilityAbstract
Background: Coal-fired power plants have historically dominated Indonesia's power sector. Using fossil fuels (coal, oil, and gas) is recognized as the most significant contributor to greenhouse gas (GHG) emissions that cause the climate crisis. Methods: Therefore, this paper examines the possibility of developing a nuclear power plant in Indonesia by conducting a systematic literature review for relevant references and adopting the DPSIR (Driving Force – Pressure – State – Impact – Response) framework. Findings: The result shows that nuclear power applications could be more attractive than the development of other renewable energy sources (wind, solar) in the future because of the non-intermittent low-carbon technology with large output and longer operating life. Besides technical issues, understanding public opinion is essential for creating effective nuclear energy policies. This study emphasizes the crucial factor for Indonesia's future nuclear energy development. The successful implementation of Indonesia's climate action strategy through nuclear power will be enabled by developing collaboration between stakeholders (government, local communities, researchers, and corporate partners) and creating opportunities for international cooperation. Conclusion: The threat posed by global climate change has attracted attention worldwide, including Indonesia. Under Indonesia's ambitious decarbonization target and the issue of energy security, adopting nuclear power in Indonesia's electricity system is considered a significant effort for sustainability in the energy transition in the future. Novelty/originality of this article: The novelty of this research lies in the systematic approach in analyzing the potential development of nuclear power plants (PLTN) in Indonesia using the DPSIR framework (Driving Force - Pressure - State - Impact - Response).
References
Abdullah, A. G., Shafii, M. A., Pramuditya, S., Setiadipura, T., & Anzhar, K. (2023). Multi-criteria decision making for nuclear power plant selection using fuzzy AHP: Evidence from Indonesia. Energy and AI, 14(April), 100263. https://doi.org/10.1016/j.egyai.2023.100263
ADB. (2015). Fossil Fuel Subsidies In Indonesia (Trends, Impacts, and Reforms). In Asian Development Bank. http://ieefa.org/wp-content/uploads/2019/02/IEEFA-Report_100-and-counting_Coal-Exit_Feb-2019.pdf%0A
https://www.odi.org/sites/odi.org.uk/files/resourcedocuments/12746.pdf%0A
http://library.fes.de/pdf-files/bueros/vietnam/13684.pdf%0Ablob:
https://aid-atlas.
Agyekum, E. B., Ansah, M. N. S., & Afornu, K. B. (2020). Nuclear energy for sustainable development: SWOT analysis on Ghana’s nuclear agenda. Energy Reports, 6(July 2015), 107–115. https://doi.org/10.1016/j.egyr.2019.11.163
Albino, V., Ardito, L., Dangelico, R. M., & Messeni Petruzzelli, A. (2014). Understanding the development trends of low-carbon energy technologies: A patent analysis. Applied Energy, 135, 836–854. https://doi.org/10.1016/j.apenergy.2014.08.012
Algarni, S., Tirth, V., Alqahtani, T., Alshehery, S., & Kshirsagar, P. (2023). Contribution of Renewable Energy Sources to the Environmental Impacts and Economic Benefits for Sustainable Development. Sustainable Energy Technologies and Assessments, 56(February), 103098. https://doi.org/10.1016/j.seta.2023.103098
Alzahrani, S. M., Alwafi, A. M., & Alshehri, S. M. (2023). A framework of examining the factors affecting public acceptance of nuclear power plant: Case study in Saudi Arabia. Nuclear Engineering and Technology, 55(3), 908–918. https://doi.org/10.1016/j.net.2022.11.009
Alzayani, S., & Alsabbagh, M. (2022). Public awareness and practices towards health impacts of PM2.5 in the Kingdom of Bahrain: Identifying areas for intervention. Environmental Health and Toxicology, 37(2), 1–10. https://doi.org/10.5620/eaht.2022014
Aunedi, M., Al, A. A., Pantaleo, A. M., Markides, C. N., & Strbac, G. (2023). System-driven design of flexible nuclear power plant configurations with thermal energy storage. Energy Conversion and Management, 291(June), 117257. https://doi.org/10.1016/j.enconman.2023.117257
Braun, V., & Clarke, V. (2019). Reflecting on reflexive thematic analysis. Qualitative Research in Sport, Exercise and Health, 11(4), 589–597. https://doi.org/10.1080/2159676X.2019.1628806
Cho, I., Oh, S., Kim, S., Ardin, F., & Heo, E. (2021). Determinants of nuclear power expansion in Indonesia. Nuclear Engineering and Technology, 53(1), 314–321. https://doi.org/10.1016/j.net.2020.06.008
Choi, Y. S., Han, E. O., & Lee, S. K. (2021). Influence of nuclear power perception by leadership groups of South Korea on nuclear power policy. Energy Strategy Reviews, 35(April), 100654. https://doi.org/10.1016/j.esr.2021.100654
Creswell, J. W., & Creswell, J. D. (2018). Research Defign: Qualitative, Quantitative, and Mixed M ethods Approaches. In SAGE Publications (Fifth).
Devine-Wright, P. (2007). Reconsidering public attitudes and public acceptance of renewable energy technologies : a critical review. In Beyond Nimbyism: a multidisciplinary investigation of public engagement with renewable energy technologies” funded by the ESRC under the ‘Towards a Sustainable Energy Economy (Issue February). http://geography.exeter.ac.uk/beyond_nimbyism/deliverables/bn_wp1_4.pdf
Dincer, I., & Acar, C. (2015). A review on clean energy solutions for better sustainability. International Journal of Energy Research, 39, 585–606. https://doi.org/10.1002/er
Edwards, M. W., Schweitzer, R. D., Shakespeare-Finch, J., Byrne, A., & Gordon-King, K. (2019). Living with nuclear energy: A systematic review of the psychological consequences of nuclear power. Energy Research and Social Science, 47(December 2017), 1–15. https://doi.org/10.1016/j.erss.2018.08.016
EIA, U. S. (2022). World nuclear statistics. https://www.eia.gov/energyexplained/nuclear/data-and-statistics.php
Farfan, J., & Breyer, C. (2017). Aging of European power plant infrastructure as an opportunity to evolve towards sustainability. International Journal of Hydrogen Energy, 42(28), 18081–18091. https://doi.org/10.1016/j.ijhydene.2016.12.138
Gari, S. R., Newton, A., & Icely, J. D. (2015). A review of the application and evolution of the DPSIR framework with an emphasis on coastal social-ecological systems. Ocean and Coastal Management, 103, 63–77. https://doi.org/10.1016/j.ocecoaman.2014.11.013
Hazarika, N., & Nitivattananon, V. (2016). Strategic assessment of groundwater resource exploitation using DPSIR framework in Guwahati city, India. Habitat International, 51, 79–89. https://doi.org/10.1016/j.habitatint.2015.10.003
Ho, S. S., Oshita, T., Looi, J., Leong, A. D., & Chuah, A. S. F. (2019). Exploring public perceptions of benefits and risks, trust, and acceptance of nuclear energy in Thailand and Vietnam: A qualitative approach. Energy Policy, 127(December 2018), 259–268. https://doi.org/10.1016/j.enpol.2018.12.011
Hosan, M. I., Dewan, M. J., Sahadath, M. H., Roy, D., & Roy, D. (2022). Assessment of public knowledge, perception, and acceptance of nuclear power in Bangladesh. Nuclear Engineering and Technology, 55(4), 1410–1419. https://doi.org/10.1016/j.net.2022.12.003
IEA. (2019). Nuclear power in clean energy system. https://doi.org/10.1787/fc5f4b7e-en
IESR. (2021). Indonesia Energy Transition Outlook 2022. Iesr, 1–93.
Ishola, F. A., Olatunji, O. O., Ayo, O. O., Akinlabi, S. A., Adedeji, P. A., & Inegbenebor, A. O. (2019). Sustainable nuclear energy exploration in Nigeria - A SWOT analysis. Procedia Manufacturing, 35, 1165–1171. https://doi.org/10.1016/j.promfg.2019.06.072
Jaafar, M. Z., Nazaruddin, N. H., & Lye, J. T. T. (2017). Challenges of deploying nuclear energy for power generation in Malaysia. AIP Conference Proceedings, 1799(January). https://doi.org/10.1063/1.4972899
Jenkins, J. D., Zhou, Z., Ponciroli, R., Vilim, R. B., Ganda, F., de Sisternes, F., & Botterud, A. (2018). The benefits of nuclear flexibility in power system operations with renewable energy. Applied Energy, 222, 872–884. https://doi.org/10.1016/j.apenergy.2018.03.002
Jin, T., & Kim, J. (2018). What is better for mitigating carbon emissions – Renewable energy or nuclear energy? A panel data analysis. Renewable and Sustainable Energy Reviews, 91, 464–471. https://doi.org/10.1016/j.rser.2018.04.022
KAI Putri, N. M., JS, B., & Aritonang, S. (2022). Uranium and Thorium Potential for Indonesia’S Future Energy Security. International Journal of Education and Social Science Research, 05(01), 235–251. https://doi.org/10.37500/ijessr.2022.5120
Kang, J. N., Wei, Y. M., Liu, L. C., Han, R., Yu, B. Y., & Wang, J. W. (2020). Energy systems for climate change mitigation: A systematic review. Applied Energy, 263(February), 114602. https://doi.org/10.1016/j.apenergy.2020.114602
Khatib, H., & Difiglio, C. (2016). Economics of nuclear and renewables. Energy Policy, 96, 740–750. https://doi.org/10.1016/j.enpol.2016.04.013
Kosai, S., & Yamasue, E. (2019). Recommendation to ASEAN nuclear development based on lessons learnt from the Fukushima nuclear accident. Energy Policy, 129(December 2018), 628–635. https://doi.org/10.1016/j.enpol.2019.02.058
Kristiadi, Y., Sari, R. F., Herdiansyah, H., Hasibuan, H. S., & Lim, T. H. (2022). Developing DPSIR Framework for Managing Climate Change in Urban Areas: A Case Study in Jakarta, Indonesia. Sustainability (Switzerland), 14(23), 1–30. https://doi.org/10.3390/su142315773
Lehtonen, M., Kojo, M., Jartti, T., Litmanen, T., & Kari, M. (2020). The roles of the state and social licence to operate? Lessons from nuclear waste management in Finland, France, and Sweden. Energy Research and Social Science, 61(March 2019), 101353. https://doi.org/10.1016/j.erss.2019.101353
Mahmood, N., Danish, Wang, Z., & Zhang, B. (2020). The role of nuclear energy in the correction of environmental pollution: Evidence from Pakistan. Nuclear Engineering and Technology, 52(6), 1327–1333. https://doi.org/10.1016/j.net.2019.11.027
Mejjad, N., Fekri, A., El Hammoumi, O., El Aouidi, S., El Kharraz, J., Kaya, S., & Moumen, A. (2021). Application of DPSIR framework to analyze the groundwater pollution threats of municipal solid waste: Case study Médiouna Landfill, Morocco. E3S Web of Conferences, 314, 1–8. https://doi.org/10.1051/e3sconf/202131406004
Miller, G. T., & Spoolman, S. E. (2016). Environmental Science (Fifteenth).
Naureen, B., Haseeb, A. S. M. A., Basirun, W. J., & Muhamad, F. (2020). The acceptance of nuclear energy as an alternative source of energy among generation Z in the Philippines: An extended theory of planned behaviour approach. Materials Science & Engineering C, 111228. https://doi.org/10.1016/j.net.2023.04.047
Nuclear-Power.com. (2023). Base Load Power Plant. https://www.nuclear-power.com/nuclear-power/reactor-physics/reactor-operation/normal-operation-reactor-control/base-load-power-plant/
Patrícia, J., Brunhara, C., Gonçalves, K., Das, T. K., Daniel, M., & Innocentini, D. M. (2023). A Driving Force-Pressure-State-Impact-Response ( DPSIR ) tool to help waste pickers ’ cooperatives self-evaluate their environmental and economic performance. 6(December 2022).
Pehl, M., Arvesen, A., Humpenöder, F., Popp, A., Hertwich, E. G., & Luderer, G. (2017). Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling. Nature Energy, 2, 939–945. https://doi.org/10.1038/s41560-017-0032-9
Perez, S., Auwer, C. Den, Pourcher, T., Russo, S., Drouot, C., Beccia, M. R., Creff, G., Fiorelli, F., Leriche, A., Castagnola, F., Steichen, P., Carle, G., Michel, H., Glaichenhaus, N., Josse, D., Pottier, N., & Provitolo, D. (2020). Comparative analysis of the perception of nuclear risk in two populations (expert/non-expert) in France. Energy Reports, 6, 2288–2298. https://doi.org/10.1016/j.egyr.2020.08.015
Permana, S., Trianti, N., & Rahmansyah, A. (2021). Nuclear energy contribution potential to secure electricity demand with low carbon emission and low risk of power plant in Indonesia. IOP Conference Series: Earth and Environmental Science, 753, 1–10. https://doi.org/10.1088/1755-1315/753/1/012048
Pfenninger, S., & Keirstead, J. (2015). Comparing concentrating solar and nuclear power as baseload providers using the example of South Africa. Energy, 87, 303–314. https://doi.org/10.1016/j.energy.2015.04.077
PLN. (2021). Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT PLN (Persero) 2021-2030.
Ram, M., Child, M., Aghahosseini, A., Bogdanov, D., Lohrmann, A., & Breyer, C. (2018). A comparative analysis of electricity generation costs from renewable, fossil fuel and nuclear sources in G20 countries for the period 2015-2030. Journal of Cleaner Production, 199, 687–704. https://doi.org/10.1016/j.jclepro.2018.07.159
Rokhmawati, A., Sugiyono, A., Efni, Y., & Wasnury, R. (2023). Quantifying social costs of coal-fired power plant generation. Geography and Sustainability, 4(1), 39–48. https://doi.org/10.1016/j.geosus.2022.12.004
Sadiq, M., Wen, F., & Dagestani, A. A. (2022). Environmental footprint impacts of nuclear energy consumption: The role of environmental technology and globalization in ten largest ecological footprint countries. Nuclear Engineering and Technology, 54(10), 3672–3681. https://doi.org/10.1016/j.net.2022.05.016
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
Sugiawan, Y., & Managi, S. (2019). Public acceptance of nuclear power plants in Indonesia: Portraying the role of a multilevel governance system. Energy Strategy Reviews, 26(October), 100427. https://doi.org/10.1016/j.esr.2019.100427
Susiati, H., Dede, M., Widiawaty, M. A., Ismail, A., & Udiyani, P. M. (2022). Site suitability-based spatial-weighted multicriteria analysis for nuclear power plants in Indonesia. Heliyon, 8(3), e09088. https://doi.org/10.1016/j.heliyon.2022.e09088
Syaeful, H., Sukadana, I. G., Susilo, Y. S. B., Indrastomo, F. D., Muhammad, A. G., & Ngadenin. (2021). Uranium exploration, deposit and resources: The key of nuclear power plant development program in Indonesia. Journal of Physics: Conference Series, 2048, 1–0. https://doi.org/10.1088/1742-6596/2048/1/012003
Tavoni, M., & van der Zwaan, B. (2011). Nuclear Versus Coal plus CCS: A Comparison of Two Competitive Base-Load Climate Control Options. Environmental Modeling and Assessment, 16, 431–440. https://doi.org/10.1007/s10666-011-9259-1
The Government of the Republic of Indonesia. (2022). Enhanced Nationally Determined Contribution Republic of Indonesia. https://unfccc.int/sites/default/files/NDC/2022-09/23.09.2022_Enhanced NDC Indonesia.pdf
The Ministry of Environment and Forestry of the Republic of Indonesia. (2022). FOLU Net Sink 2030.
The World Bank. (2022). Population, total - Indonesia. https://data.worldbank.org/indicator/SP.POP.TOTL?locations=ID
Velasquez, C. E., e Estanislau, F. B. G. L., Costa, A. L., & Pereira, C. (2020). Assessment of the French nuclear energy system – A case study. Energy Strategy Reviews, 30(July 2018). https://doi.org/10.1016/j.esr.2020.100513
Wisnubroto, D. S., Sunaryo, G. R., Susilo, Y. S. B., Bahri, S., & Setiadipura, T. (2021). The challenges of implementing the Indonesian experimental power reactor (RDE) program. Journal of Physics: Conference Series, 2048(1). https://doi.org/10.1088/1742-6596/2048/1/012001
Wisnubroto, D. S., Sunaryo, G. R., Susilo, Y. S. B., Bakhri, S., & Setiadipura, T. (2023). Indonesia’s experimental power reactor program (RDE). Nuclear Engineering and Design, 404(January), 112201. https://doi.org/10.1016/j.nucengdes.2023.112201
Wisnubroto, D. S., Zamroni, H., Sumarbagiono, R., & Nurliati, G. (2021). Challenges of implementing the policy and strategy for management of radioactive waste and nuclear spent fuel in Indonesia. Nuclear Engineering and Technology, 53(2), 549–561. https://doi.org/10.1016/j.net.2020.07.005
World Energy Council. (2021). World Energy Trilemma Index 2021. 1–69. https://trilemma.worldenergy.org/reports/main/2020/World Energy Trilemma Index 2020.pdf
Yang, J., Wang, J., Zhang, X., Shen, C., & Shao, Z. (2022). How Social Impressions Affect Public Acceptance of Nuclear Energy: A Case Study in China. Sustainability (Switzerland), 14(18), 1–23. https://doi.org/10.3390/su141811190
Yoro, K. O., & Daramola, M. O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in Carbon Capture: Methods, Technologies and Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-819657-1.00001-3
Zhang, J., Ali, S., & Ping, L. (2023). Asymmetric linkages between nuclear energy and environmental quality: Evidence from Top-10 nuclear energy consumer countries. Nuclear Engineering and Technology, 55(5), 1878–1884. https://doi.org/10.1016/j.net.2023.01.006
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Jurnal Bisnis Kehutanan dan Lingkungan
This work is licensed under a Creative Commons Attribution 4.0 International License.