Reducing greenhouse gases through green industry: Indonesia's commitment with WHRPG technology in the cement industry sector

Authors

  • Winda Carla Vienna Environmental Enineering, Faculty of Engineering, President University, Bekasi, Jawa Barat, 17534, Indonesia, Indonesia
  • Yunita Ismail Masjud Environmental Enineering, Faculty of Engineering, President University, Bekasi, Jawa Barat, 17534, Indonesia, Indonesia

DOI:

https://doi.org/10.61511/enjust.v1i1.2024.680

Keywords:

cement, green industry, WHRPG

Abstract

Background: Infrastructure development is a one aspect of measuring the progress of a country. Unfortunately, the process of making cement as one of the main raw materials requires a lot of energy and pr produces exhaust gases which can increase the potential for greenhouse gases. In line with the government's desire to, independently reduce around 29% CO2-equivalent. So with this, the industrial sector is committed to reducing GHG from three emission sources, namely energy, industrial processes and product use as well as industrial waste management. With the Waste Heat Recovery Power Generation (WHRPG) technology, production costs can save IDR 120 billion per year. Where this breakthrough utilizes residual exhaust gas from cement production to save energy use in cement production. It also has the potential to reduce GHG from the remaining production gas. The cement industry generally requires an efficient amount of energy in production, around 50% of production costs come from energy purchases. The objectives of this research are to study the effective and more efficient energy for cement production with WHRPG. Methods: The study method in writing is a literature review. Findings: With Waste Heat Recovery Power Generation (WHRPG) technology, IDR 120 billion per year can save production costs. Where this breakthrough utilizes the remaining exhaust gas from cement production to save energy use in cement production. It also has the potential to reduce GHG from the remaining production gas. Conclusion: Increased costs in energy use and contributors to global warming emissions are the basic foundations in developing energy systems to improve efficiency and reduce emissions. With that, the use of WHRPG is an alternative solution by striving for operational efficiency and reducing exhaust emissions so that it is more environmentally friendly. Where WHRPG utilizes the exhaust gas of cement production.

References

Aini, D., Farhaini, A., & Putra, B. K. (2023). Community Participation in Improving Health in Remote Areas: A Literature Review. International Journal of Education, Information Technology and Others (IJEIT), 6(2), 27–43. https://doi.org/10.5281/zenodo.7798056

Aminah & Yusriyadi. (2018). Implementation of the Green Industry Program as an Effort to Fulfill the Commitment to Reduce Greenhouse Gases. http://dx.doi.org/10.1186/s13662-017-1121-6

Calvo, V. L. V., Giner-Santonja, G., Alonso-Fariñas, B. & Aguado, J. M. (2021). The effect of the European Industrial Emissions Directive on the air emission limit values set by competent authorities in the permitting procedure: The case of the Spanish cement industry. Science of The Total Environment, 773, 145491. https://doi.org/10.1016/j.scitotenv.2021.145491

Cao, Z., Myers, R.J., Lupton, R.C. et al. (2020). The sponge effect and carbon emission mitigation potentials of the global cement cycle. Nat Commun 11, 3777. https://doi.org/10.1038/s41467-020-17583-w

Farhaini, A., Putra, B. K., & Aini, D. (2022). Reformasi Birokrasi dalam Pelayanan Publik Melalui Aplikasi Halodoc di Kota Mataram. Professional: Jurnal Komunikasi Dan Administrasi Publik, 9(1), 71–82. https://doi.org/10.37676/professional.v9i1.2416

Kikuchi, R. (2001). Recycling of municipal solid waste for cement production: Pilot-scale test for transforming incineration ash of solid waste into cement clinker, 31(2). https://doi.org/10.1016/S0921-3449(00)00077-X

Hossain, N., Bhuiyan, M. A., Pramanik, B. K., Nizamuddin, S., & Griffin, G. (2020). Waste materials for wastewater treatment and waste adsorbents for biofuel and cement supplement applications: A critical review. Journal of Cleaner Production, 255. https://doi.org/10.1016/j.jclepro.2020.120261

Lestianingrum, E., Nobon, & Ariyanto, T. (2022). Tanggung Jawab Sosial, Ekonomi, dan Lingkungan PT Indocement Tunggal Prakarsa Tbk (PT ITP) melalui Program Reduce, Reuse, Recycle, dan Recovery Kantong Semen. Jurnal Teknologi Linkungan, 23(2),151–158. https://doi.org/10.29122/jtl.v23i2.5279

Li, J., & Yang, T. (2016). China’ s Eco-city Construction. https://www.amazon.com/Eco-city-Construction-Research-Chinese-Development/dp/3662481529

Lü, Y. L. Geng, J., & He, G. Z. (2015). Industrial transformation and green production to reduce environmental emissions: Taking cement industry as a case. Adv. Clim. Chang. Res, 6(3– 4), 202–209. https://doi.org/10.1016/j.accre.2015.10.002

Martadiastuti, V., Pratiwi, B., & Ali, R. K. (2022). Estimasi Cadangan Batugamping sebagai Bahan Baku Utama Semen pada Kuari Batugamping, PT. Semen Indonesia (Persero), Tbk., Kabupaten Rembang, Provinsi Jawa Tengah. Jurnal Geosains dan Teknologi, 5(1), 53-60. https://doi.org/10.14710/jgt.5.1.2022.53-60

Naqi, A., & Jang, J. G. (2019). Recent progress in green cement technology utilizing low- carbon emission fuels and raw materials: A review. Sustainability, 11(2), 537. https://doi.org/10.3390/su11020537

Ningrum, L. T., Permatasari, L., Ussarwan, M. I., Farhaini, A., Aini, D., & Putra, B. K. (2023). Review: Pemanfaatan Tanaman Jahe Sebagai Pengobatan Herbal Untuk Sakit Kepala. BENZENA Pharmaceutical Scientific Journal, 2(2), 55–65. http://dx.doi.org/10.31941/benzena.v2i02.3751

Nugrahadi, Mujayyin, F., & Adi, L. (2021). Produktivitas Pembangkit Listrik Waste Heat Recovery Power Generation (WHRPG) Pabrik Semen, 1(1), 1–10. http://dx.doi.org/10.36499/psnst.v1i1.5142

Nurbaiti, T., Harefa, S., Zaky, M., Pati, H. K. & Nurhayati. (2021). Sustainability UMKM di Era Teknologi Green Industry, Adibrata Jurnal, 2(1)1, 126–134. https://openjournal.unpam.ac.id/index.php/adt/article/view/15586

Oláh, J., Aburumman, N., Popp, J., Khan, M. A., Haddad, H., & Kitukutha, N. (2020). Impact of Industry 4.0 on environmental sustainability. Sustainability, 12(11), 4674. https://doi.org/10.3390/su11020537

Putra, B. K., Dewi, R. M., Fadilah, Y. H., & Roziqin, A. (2021). Reformasi Birokrasi dalam Pelayanan Publik Melalui Mobile JKN di Kota Malang. Jurnal Ilmiah Publika, 9(1), 1–13. http://dx.doi.org/10.33603/publika.v9i1.5325

Putri, P. Y., & Sandra, N. (2015). Perbandingan Perilaku Balok Beton Bertulang Dengan Menggunakan Ordinary Portland Cement (OPC) dan Portland Composite Cement (PCC). Jurnal Rekayasa Sipil Politeknik Negeri Andalas, 12(1), 45-54. https://www.neliti.com/id/publications/127377/perbandingan-perilaku-balok-beton-bertulang-dengan-menggunakan-ordinary-portland

Sa’adawisna, D., & Putra, B. K. (2022). The Effect of the Establishment of a New Autonomous Region on Electoral District Regulations in the 2024 General Election. Jurnal Ilmiah Wahana Pendidikan, 8(20), 484–493. https://doi.org/10.5281/zenodo.7269113

Sa’adawisna, D., & Putra, B. K. (2023). Political Education to Increase Beginner Voter Participation in the 2019 General Elections. Awang Long Law Review, 5(2), 419–431. https://doi.org/10.56301/awl.v5i2.716

Sismoro, H., & Anggraeni, D. (2021). Perbandingan Campuran Jumlah Semen Dan Calcium Carbonate Untuk Peningkatan Kekuatan Beton Pada Uji Laboratorium, Sistem Infrastruktur Teknik Sipil (SIMTEKS), 3(1), 80–88. https://doi.org/10.32897/simteks.v1i1.807

Tabaa, M., Monteiro, F., Bensag, H., & Dandache, A. (2020). Green Industrial Internet of Things from a smart industry perspectives. Energy Reports, 6, 430-446. https://doi.org/10.1016/j.egyr.2020.09.022

Tzelepi, V et al. (2020). Biomass availability in Europe as an alternative fuel for full conversion of lignite power plants: A critical review,” Energies, 13(13). https://doi.org/10.3390/en13133390

Ummi, R. K. (2017). A Comparative Study of Green Technology in Cement Industry,” ASEAN/Asian Acad. Soc. Int. …, 2017, [Online]. Available: https://aasic.org/proc/aasic/article/view/330

Undang-Undang No 3 Tahun 2014 Tentang Perindustrian. https://peraturan.bpk.go.id/Details/38572/uu-no-3-tahun-2014

United Nations Industrial Development Organization. (2011). Unido Green Industry Initiative for sustainable Industrial Development, 1–44. Available: http://www.greenindustryplatform.org/wp-content/uploads/2013/05/Green- Industry-Initiative-for-Sustainable-Industrial-Development.pdf

Winarso, K., Jufriyanto, M. & Dewanti, A. P. (2019). Standard of Green Industry with Green Industry in Go Public Cement Industry. Icoemis, 9–14, https://doi.org/10.2991/icoemis-19.2019.2.

Wirawan, H. & Sinaga, N. (2021). Analisis Eksergi Pada Rotary Kiln Di Industri Semen. SJMEkinematika. 6(1), 65–84. https://doi.org/10.20527/sjmekinematika.v6i1.191

Xie, M., Li, R., Zhao, H., Liu, W., Lu, T., & Liu, F. (2020). Detoxification of spent cathode carbon blocks from aluminum smelters by joint controlling temperature-vacuum process. Journal Cleaner Production, 249. https://doi.org/10.1016/j.jclepro.2019.119370

Yansuri, D. S. (2018). Planning of a Waste Heat Recovery Power Generation (WHRPG) System for a Cement Plant, Jurnal Teknik Electro, 8(2), 1–8. https://repository.uin-suska.ac.id/65730/2/TA%20LENGKAP%20KECUALI%20BAB%20IV.pdf

Wahidah, N., Isro’ullaili, I., & Putra, B. K. (2023). The School Literacy Movement (GLS) and Student’s Interest in Reading at SDN 3 Suka Makmur. Jurnal Ilmiah Wahana Pendidikan, 9(7), 559–564. https://doi.org/10.5281/zenodo.7826963

Downloads

Published

2024-02-29

Issue

Section

Articles

Citation Check