Automated control design in a sensor and AI-based intelligence monitoring system for suspicious activity detection

Authors

  • Fahreza Alfarizi Sekolah Tinggi Inteligen Negara, Bogor, West Java 16810, Indonesia
  • Poppy Setiawati Nurisnaeny Sekolah Tinggi Inteligen Negara, Bogor, West Java 16810, Indonesia

DOI:

https://doi.org/10.61511/rstde.v2i2.2025.2248

Keywords:

artificial intelligence, intelligence monitoring, internet of things

Abstract

Background: In the modern digital landscape, intelligence monitoring systems integrating advanced sensor technology and artificial intelligence (AI) have become essential for enhancing public safety. These systems aim to not only observe but also recognize and respond to suspicious activities effectively and efficiently. Current literature highlights the transformative impact of IoT and AI in various sectors, offering significant improvements over traditional methods. Methods: This study explores the integration of sensor networks, AI-driven algorithms, and Internet of Things platforms. Data collection involves real-time inputs from devices such as cameras, PIR sensors, and microphones, analyzed through machine learning techniques to enhance detection precision. Findings: The systems demonstrate improved monitoring efficiency and have the capacity to operate autonomously, ensuring security across both public and private sectors. They offer long-term cost savings and overcome the limitations inherent in human-operated systems. Conclusion: These systems represent a significant advancement toward proactive and intelligent surveillance, enhancing public safety and security. Novelty/Originality of this article: The research underscores the novel integration of cutting-edge technologies in intelligence monitoring, establishing new benchmarks in adaptability and responsiveness, and setting the foundation for future advancements in cohesive and sustainable surveillance frameworks.

References

Abdulkareem, M., & Petersen, S. E. (2021). The promise of ai in detection, diagnosis, and epidemiology for combating COVID-19: Beyond the hype. Frontiers in Artificial Intelligence, 4. https://doi.org/10.3389/frai.2021.652669

Aldhaheri, A., Alwahedi, F., Ferrag, M. A., & Battah, A. (2024). Deep learning for cyber threat detection in IoT networks: A review. Internet of Things and Cyber-Physical Systems, 4, 110–128. KeAi Communications Co. https://doi.org/10.1016/j.iotcps.2023.09.003

Aliero, M. S., Asif, M., Ghani, I., Pasha, M. F., & Jeong, S. R. (2022). Systematic review analysis on smart building: Challenges and opportunities. Sustainability (Switzerland), 4(5). MDPI. https://doi.org/10.3390/su14053009

Boltsi, A., Kalovrektis, K., Xenakis, A., Chatzimisios, P., & Chaikalis, C. (2024). Digital tools, technologies, and learning methodologies for education 4.0 frameworks: A STEM oriented survey. IEEE Access, 12, 12883–12901. https://doi.org/10.1109/ACCESS.2024.3355282

Braik, M., Awadallah, M. A., Al-Betar, M. A. A., Hammouri, A. I., & Alzubi, O. A. (2023). Cognitively enhanced versions of capuchin search algorithm for feature selection in medical diagnosis: COVID-19 Case Study. Cognitive Computation, 15(6), 1884–1921. https://doi.org/10.1007/s12559-023-10149-0

Chaka, C. (2023). Detecting AI content in responses generated by ChatGPT, YouChat, and Chatsonic: The case of five AI content detection tools. Journal of Applied Learning and Teaching, 6(2), 94–104. https://doi.org/10.37074/jalt.2023.6.2.12

Chen, W., Zhao, G., Wang, J., Qian, B., & Dou, W. (2023). Power supply station equipment status monitoring and evaluation system based on wireless network technology. International Journal of Thermofluids, 20. https://doi.org/10.1016/j.ijft.2023.100514

Cho, S., Ma, J., & Yakimenko, O. A. (2023). Aerial multi-spectral AI-based detection system for unexploded ordnance. Defence Technology, 27, 24–37. https://doi.org/10.1016/j.dt.2022.12.002

de Boer, K., & Schroën, K. (2024). Polymer-based stimuli-responsive systems for protein capture: capacity, reversibility, and selectivity. In Separation and Purification Technology (Vol. 337). Elsevier B.V. https://doi.org/10.1016/j.seppur.2024.126288

Desaire, H., Chua, A. E., Kim, M. G., & Hua, D. (2023). Accurately detecting AI text when ChatGPT is told to write like a chemist. Cell Reports Physical Science, 4(11). https://doi.org/10.1016/j.xcrp.2023.101672

Desalegn, B., Gebeyehu, D., & Tamirat, B. (2022). Wind energy conversion technologies and engineering approaches to enhancing wind power generation: A review. Heliyon, 8(11). https://doi.org/10.1016/j.heliyon.2022.e11263

El khediri, S., Benfradj, A., Thaljaoui, A., Moulahi, T., Ullah Khan, R., Alabdulatif, A., & Lorenz, P. (2024). Integration of artificial intelligence (AI) with sensor networks: Trends, challenges, and future directions. Journal of King Saud University - Computer and Information Sciences, 36(1). https://doi.org/10.1016/j.jksuci.2023.101892

Elkhatat, A. M., Elsaid, K., & Almeer, S. (2023). Evaluating the efficacy of AI content detection tools in differentiating between human and AI-generated text. International Journal for Educational Integrity, 19(1). https://doi.org/10.1007/s40979-023-00140-5

Fang, X., Zang, J., Zhai, Z., Zhang, L., Shu, Z., & Liang, Y. (2023). Exploring potential dual-stage attention based recurrent neural network machine learning application for dosage prediction in intelligent municipal management. Environmental Science: Water Research and Technology, 9(3), 890–899. https://doi.org/10.1039/d2ew00560c

Fu, Y., Liu, Y., Song, W., Yang, D., Wu, W., Lin, J., Yang, X., Zeng, J., Rong, L., Xia, J., Lei, H., Yang, R., Zhang, M., & Liao, Y. (2023). Early monitoring-to-warning Internet of Things system for emerging infectious diseases via networking of light-triggered point-of-care testing devices. Exploration, 3(6). https://doi.org/10.1002/EXP.20230028

Gawande, U., Hajari, K., & Golhar, Y. (2024). Novel person detection and suspicious activity recognition using enhanced YOLOv5 and motion feature map. Artificial Intelligence Review, 57(2). https://doi.org/10.1007/s10462-023-10630-0

Gómez-Quintana, S., Schwarz, C. E., Shelevytsky, I., Shelevytska, V., Semenova, O., Factor, A., Popovici, E., & Temko, A. (2021). A framework for ai-assisted detection of patent ductus arteriosus from neonatal phonocardiogram. Healthcare (Switzerland), 9(2). https://doi.org/10.3390/healthcare9020169

Irwanto, F., Hasan, U., Lays, E. S., De La Croix, N. J., Mukanyiligira, D., Sibomana, L., & Ahmad, T. (2024). IoT and fuzzy logic integration for improved substrate environment management in mushroom cultivation. Smart Agricultural Technology, 7. https://doi.org/10.1016/j.atech.2024.100427

Ivanov, O., Neagu, B. C., Gavrilas, M., & Grigoras, G. (2021). A phase generation shifting algorithm for prosumer surplus management in microgrids using inverter automated control. Electronics (Switzerland), 10(22). https://doi.org/10.3390/electronics10222740

Kang, C. C., Tan, J. D., Ariannejad, M., Bhuiyana, M. A. S., Ng, Z. N., & Yong, S. C. H. (2023). Smart sensor controller for HVAC system. Energy Reports, 9, 60–63. https://doi.org/10.1016/j.egyr.2023.09.113

Khazane, H., Ridouani, M., Salahdine, F., & Kaabouch, N. (2024). A Holistic Review of Machine Learning Adversarial Attacks in IoT Networks. In Future Internet (Vol. 16, Issue 1). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/fi16010032

Kim, T. eun, Perera, L. P., Sollid, M. P., Batalden, B. M., & Sydnes, A. K. (2022). Safety challenges related to autonomous ships in mixed navigational environments. WMU Journal of Maritime Affairs, 21(2), 141–159. https://doi.org/10.1007/s13437-022-00277-z

Labouré, V. M., Schunert, S., Terlizzi, S., Prince, Z. M., Ortensi, J., Lin, C. S., Charlot, L. M., & DeHart, M. D. (2023). Automated power-following control for nuclear thermal propulsion startup and shutdown using MOOSE-based applications. Progress in Nuclear Energy, 161. https://doi.org/10.1016/j.pnucene.2023.104710

le Febvrier, A., Landälv, L., Liersch, T., Sandmark, D., Sandström, P., & Eklund, P. (2021). An upgraded ultra-high vacuum magnetron-sputtering system for high-versatility and software-controlled deposition. Vacuum, 187. https://doi.org/10.1016/j.vacuum.2021.110137

Loughran, B., Streeter, M. J. V., Ahmed, H., Astbury, S., Balcazar, M., Borghesi, M., Bourgeois, N., Curry, C. B., Dann, S. J. D., Diiorio, S., Dover, N. P., Dzelzainis, T., Ettlinger, O. C., Gauthier, M., Giuffrida, L., Glenn, G. D., Glenzer, S. H., Green, J. S., Gray, R. J., Palmer, C. A. J. (2023). Automated control and optimization of laser-driven ion acceleration. High Power Laser Science and Engineering, 11. https://doi.org/10.1017/hpl.2023.23

Masson, T. M., Zondag, S. D. A., Kuijpers, K. P. L., Cambié, D., Debije, M. G., & Noël, T. (2021). Development of an off-grid solar-powered autonomous chemical mini-plant for producing fine chemicals. ChemSusChem, 14(24), 5417–5423. https://doi.org/10.1002/cssc.202102011

Mischos, S., Dalagdi, E., & Vrakas, D. (2023). Intelligent energy management systems: a review. Artificial Intelligence Review, 56(10), 11635–11674. https://doi.org/10.1007/s10462-023-10441-3

Okenyi, V., Bodaghi, M., Mansfield, N., Afazov, S., & Siegkas, P. (2024). A review of challenges and framework development for corrosion fatigue life assessment of monopile-supported horizontal-axis offshore wind turbines. In Ships and Offshore Structures (Vol. 19, Issue 1, pp. 1–15). Taylor and Francis Ltd. https://doi.org/10.1080/17445302.2022.2140531

Omoloye, A., Weisenburger, S., Lehner, M. D., & Gronier, B. (2024). Menthacarin treatment attenuates nociception in models of visceral hypersensitivity. Neurogastroenterology and Motility, 36(4). https://doi.org/10.1111/nmo.14760

Orzechowski, M., Skuban-Eiseler, T., Ajlani, A., Lindemann, U., Klenk, J., & Steger, F. (2023). User perspectives of geriatric German patients on smart sensor technology in healthcare. Sensors, 23(22). https://doi.org/10.3390/s23229124

Pereira, R. C. A., da Silva, O. S., de Mello Bandeira, R. A., dos Santos, M., de Souza Rocha, C., Castillo, C. dos S., Gomes, C. F. S., de Moura Pereira, D. A., & Muradas, F. M. (2023). Evaluation of smart sensors for subway electric motor escalators through AHP-Gaussian method. Sensors, 23(8). https://doi.org/10.3390/s23084131

Rehman, Z., Tariq, N., Moqurrab, S. A., Yoo, J., & Srivastava, G. (2024). Machine learning and internet of things applications in enterprise architectures: Solutions, challenges, and open issues. Expert Systems, 41(1). https://doi.org/10.1111/exsy.13467

Saleem, M. U., Usman, M. R., Usman, M. A., & Politis, C. (2022). design, deployment and performance evaluation of an iot based smart energy management system for demand side management in smart grid. IEEE Access, 10, 15261–15278. https://doi.org/10.1109/ACCESS.2022.3147484

Schlaeger, S., Shit, S., Eichinger, P., Hamann, M., Opfer, R., Krüger, J., Dieckmeyer, M., Schön, S., Mühlau, M., Zimmer, C., Kirschke, J. S., Wiestler, B., & Hedderich, D. M. (2023). AI-based detection of contrast-enhancing MRI lesions in patients with multiple sclerosis. Insights into Imaging, 14(1). https://doi.org/10.1186/s13244-023-01460-3

Sekizawa, Y., Hasegawa, Y., Mitomo, H., Toyokawa, C., Yonamine, Y., & Ijiro, K. (2024). Dynamic orientation control of gold nanorods in polymer brushes by their thickness changes for plasmon switching. Advanced Materials Interfaces, 11(11). https://doi.org/10.1002/admi.202301066

Smarsly, K., & Dragos, K. (2024). Advancing civil infrastructure assessment through robotic fleets. Internet of Things and Cyber-Physical Systems, 4, 138–140. https://doi.org/10.1016/j.iotcps.2023.10.003

Vassányi, I., Szakonyi, B., Loi, D., Mantur-Vierendeel, A., Quintas, J., Solinas, A., Blažica, B., Raffo, L., Guicciardi, M., Manca, A., Gaál, B., & Rárosi, F. (2024). Impact of information technology supported serious leisure gardening on the wellbeing of older adults: The turntable project. Geriatric Nursing, 55, 339–345. https://doi.org/10.1016/j.gerinurse.2023.12.014

Zemenkova, M. Y., Chizhevskaya, E. L., & Zemenkov, Y. D. (2022). Intelligent monitoring of the condition of hydrocarbon pipeline transport facilities using neural network technologies. Journal of Mining Institute, 258, 933–944. https://doi.org/10.31897/PMI.2022.105

Zeng, H., Yunis, M., Khalil, A., & Mirza, N. (2024). Towards a conceptual framework for AI-driven anomaly detection in smart city IoT networks for enhanced cybersecurity. Journal of Innovation and Knowledge, 9(4). https://doi.org/10.1016/j.jik.2024.100601

Zhao, Y. (2023). Digital governance with smart sensors: Exploring grid administration in Zhejiang’s “future Community.” Journal of Computer-Mediated Communication, 28(5). https://doi.org/10.1093/jcmc/zmad016

Downloads

Published

2025-08-31

Issue

Section

Articles

Citation Check