Analisis kinerja sistem produksi pada industri produsen Tahu Bandung dengan pendekatan simulasi event diskrit studi kasus: Tahu Bandung ALN

Authors

  • Luqy Afifah Okatria Program Studi Manajemen, Fakultas Ekonomi dan Bisnis, Universitas Indonesia, Indonesia
  • Ratih Dyah Kusumastuti Departemen Manajemen, Fakultas Ekonomi dan Bisnis, Universitas Indonesia, Indonesia

Keywords:

industri manufaktur, industri produsen tahu bandung, simulasi kejadian diskrit, sistem produksi

Abstract

Latar Belakang: Penelitian ini bertujuan untuk menganalisis kinerja sistem produksi yang saat ini diterapkan oleh Tahu Bandung ALN dan memberikan usulan alternatif perbaikan yang bisa diterapkan agar kinerja sistem produksinya menjadi lebih efisien. Metode: Penelitian ini menggunakan pendekatan simulasi event diskrit dengan parameter penilaian kinerja yang digunakan berupa waktu total produksi dan biaya total produksi. Hasil: Hasil simulasi base case scenario menemukan bahwa terdapat beberapa proses produksi yang memiliki waktu tunggu yang menandakan terjadinya bottleneck pada proses. Oleh karena itu, diusulkan dua alternatif perbaikan, yaitu skenario pertama (penambahan jumlah sumber daya pada proses produksi yang memiliki waktu tunggu) dan skenario kedua (kombinasi penambahan jumlah sumber daya pada proses produksi yang memiliki waktu tunggu dan kebijakan persediaan bahan baku tertentu). Alternatif skenario pertama menjadi alternatif skenario yang mampu memberikan perbaikan kinerja sistem produksi yang lebih efisien dengan waktu total produksi turun sebesar 22,40% dan biaya total produksi turun sebesar 40,57%.

References

Altiok, T., & Melamed, B. (2007). Simulation Modeling and Analysis with Arena. Academic Press.

Badan Pusat Statistik. (2020). Indikator Industri Manufaktur 2018.

Banks, J., Carson II, J. S., Nelson, B. L., & Nicol, D. M. (2005). Discrete-Event System Simulation. Prentice Hall. https://doi.org/10.2307/1268124

Bartezzaghi, E., & Turco, F. (1989). The Impact of Just-in-time on Production System Performance: An Analytical Framework. International Journal of Operations & Production Management, 9(8), 40–62.

Benton, W. C. (2010). Push and Pull Production Systems. Wiley Encyclopedia of Operations Research and Management Science. https://doi.org/10.1287/opre.40.3.521

Bozarth, C. C., & Handfield, R. B. (2019). Introduction to Operations and Supply Chain Management (5th ed.). Pearson Education, Inc. https://doi.org/10.1109/IEMCE.2008.4618002

Carata, E. (2020). ANALYSIS OF SHOP FLOOR MACHINE PARTS MANUFACTURING THROUGH DISCRETE EVENT SIMULATION. Bulletin of the Polytechnic Institute of Jassy, 66(70).

Choi, B., & Kang, D. (2013). Modeling and Simulation of Discrete-Event Systems. John Wiley & Sons.

Dilworth, J. B. (1993). Production and Operations Management: Management and Services. (5th ed.). McGraw-Hill Book Co.

Ghrayeb, O., Phojanamongkolkij, N., & Tan, B. A. (2009). A hybrid push/pull system in assemble-to-order manufacturing environment. Journal of Intelligent Manufacturing, 20(4), 379–387. https://doi.org/10.1007/s10845-008-0112-6

Groover, M. P. (2020). Fundamentals of Modern Manufacturing: Materials, Processes, and Systems (7th ed.). John Wiley & Sons.

Harding, H. A. (1984). Production Management. M&E Limited.

Heizer, J., Render, B., & Munson, C. (2017). Operations management: sustainability and supply chain management (12th ed.). Pearson Education, Inc.

Hernandez-Matias, J. C., Vizan, A., Hidalgo, A., & Rios, J. (2006). Evaluation of techniques for manufacturing process analysis. Journal of Intelligent Manufacturing, 17(5), 571–583. https://doi.org/10.1007/s10845-006-0025-1

Huang, S. H., Dismukes, J. P., Shi, J., Su, Q., Wang, G., Razzak, M. A., & Robinson, D. E. (2002). Manufacturing system modeling for productivity improvement. Journal of Manufacturing Systems, 21(4), 249–259. https://doi.org/10.1016/S0278-6125(02)80165-0

Jahangirian, M., Eldabi, T., Naseer, A., Stergioulas, L. K., & Young, T. (2010). Simulation in manufacturing and business: A review. European Journal of Operational Research, 203(1), 1–13. https://doi.org/10.1016/j.ejor.2009.06.004

Kementerian Perindustrian. (2020). LAPORAN KINERJA PEMBANGUNAN INDUSTRI TAHUN 2020.

Law, A. M. (2015). Simulation Modeling and Analysis (5th ed.). McGraw-Hill Education.

Pedgen, C. D., Shannon, R. E., & Sadowski, R. P. (1995). Introduction to Simulation Using SIMAN. McGraw-Hill Inc.

Puchkova, A., Le Romancer, J., & McFarlane, D. (2016). Balancing Push and Pull Strategies within the Production System. IFAC-PapersOnLine, 49(2), 66–71. https://doi.org/10.1016/j.ifacol.2016.03.012

Rasib, A. H. A., Abdullah, R., Bazilah, N. F., Rafaai, Z. F. M., & Noor, R. M. (2021). Production Smoothness Improvement through ARENA Application in the Food Manufacturing Industry. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(3), 3516–3526. https://doi.org/10.17762/turcomat.v12i3.1627

Russel, R. S., & Taylor, B. W. (2011). Operations Management: Creating Value Along The Supply Chain (7th ed.). John Wiley & Sons.

Sandhu, M. A., Helo, P., & Kristianto, Y. (2013). Steel supply chain management by simulation modelling. Benchmarking, 20(1), 45–61. https://doi.org/10.1108/14635771311299489

Sharma, P. (2015). Discrete-Event Simulation. International Journal of Scientific & Technology Research, 4(04), 136–140.

Walley, B. H. (1980). Production Management Handbook. Gower.

Wang, B. (2018). The Future of Manufacturing: A New Perspective. Engineering, 4(5), 722–728. https://doi.org/10.1016/j.eng.2018.07.020

Zheng, N., & Lu, X. (2009). Comparative study on push and pull production system based on anylogic. Proceedings - 2009 International Conference on Electronic Commerce and Business Intelligence, ECBI 2009, 455–458. https://doi.org/10.1109/ECBI.2009.26

Downloads

Published

2024-08-31

Issue

Section

Articles

Citation Check