Integrating disaster risk into economic valuation of strategic infrastructure: A case study of Yogyakarta International Airport under tsunami threat

Authors

  • Wezia Berkademi School of Environmental Science, Universitas Indonesia, Central Jakarta, Jakarta, 10440, Indonesia
  • Muhammad Fauzan Ramadhan Department Education of Geography, Faculty Social and Political Science, Universitas Negeri Semarang, Central Java, 50229, Indonesia

DOI:

https://doi.org/10.61511/jdmcr.v2i1.2242

Keywords:

disaster risk reduction, economic loss estimation, Yogyakarta International Airport, infrastructure resilience, tsunami risk

Abstract

Background: In response to the increasing frequency of natural disasters and the urgency of climate adaptation, this study assesses the potential economic losses at Yogyakarta International Airport (YIA), a key National Strategic Project/Proyek Strategis Nasional (PSN) in Indonesia. Despite its critical role in promoting regional connectivity and economic growth, YIA is located in a high-risk seismic and tsunami-prone zone along the Indian Ocean. Methods: Using the Total Economic Value (TEV) framework, this research estimates direct and indirect losses resulting from a hypothetical disaster scenario, including waterlogging impacts on runways and aprons. The analysis integrates hazard exposure data, infrastructure vulnerability, and sectoral economic linkages, encompassing damage to assets, disruptions to tourism, and income loss during the recovery phase. Findings: Findings reveal that a single severe disaster could result in 429,746,360,380 rupiah losses, with cascading effects on local livelihoods and regional mobility. The study underscores the need for ex-ante disaster risk integration in infrastructure investment planning, contributing to the development of resilient and sustainable airport systems under Indonesia’s long-term disaster risk reduction framework. Conclusion: This study concludes that Yogyakarta International Airport (YIA) is highly vulnerable to tsunami hazards, with potential for extensive infrastructure damage and significant direct and indirect economic losses, underscoring the urgent need to integrate disaster risk reduction into the planning and operation of critical infrastructure. Novelty/Originality of this article: This article lies in its application of the Total Economic Value (TEV) framework combined with hazard exposure analysis to comprehensively estimate both direct and indirect economic losses of Yogyakarta International Airport (YIA) as a National Strategic Project (PSN) in a tsunami-prone area.

References

Alam, I., & Ali, Y. (2023). Studying the effects of Türkiye earthquake disaster and its impact on real estate industry: A risk analysis based on input-output & non-linear optimization models. International Journal of Disaster Risk Reduction, 96, 103920. https://doi.org/10.1016/j.ijdrr.2023.103920

Ayalke, Z. G., Şişman, A., & Akpinar, K. (2023). Shoreline extraction and analyzing the effect of coastal structures on shoreline changing with remote sensing and geographic information system: Case of Samsun, Turkey. Regional Studies in Marine Science, 61, 102883. https://doi.org/10.1016/j.rsma.2023.102883

BNPB. (2019). Grand Design Mitigasi Bencana Kawasan Strategis Bandara Pasca Pembangunan Yogyakarta International Airport 2020 – 2024. Yogyakarta International Airport (YIA).

Carrera, L., Standardi, G., Bosello, F., & Mysiak, J. (2015). Assessing direct and indirect economic impacts of a flood event through the integration of spatial and computable general equilibrium modelling. Environmental Modelling & Software, 63, 109-122. https://doi.org/10.1016/j.envsoft.2014.09.016

De Jonge, T., Kok, M., & Hogeweg, M. (1996). Modelling floods and damage assessment using GIS. Iahs publication, 299-306.

Fakhruddin, B., Kintada, K., & Tilley, L. (2021). Probabilistic tsunami hazard and exposure assessment for the pacific islands-Fiji. International Journal of Disaster Risk Reduction, 64, 102458. https://doi.org/10.1016/j.ijdrr.2021.102458

Freeman Iii, A. M., Herriges, J. A., & Kling, C. L. (2014). The measurement of environmental and resource values: theory and methods. Routledge. https://doi.org/10.4324/9781315780917.

Galbusera, L., & Giannopoulos, G. (2018). On input-output economic models in disaster impact assessment. International journal of disaster risk reduction, 30, 186-198. https://doi.org/10.1016/j.ijdrr.2018.04.030

Gall, M. (2015). The suitability of disaster loss databases to measure loss and damage from climate change. International Journal of Global Warming, 8(2), 170-190. https://doi.org/10.1504/ IJGW.2015.071966.

Gupta, A. K., Bindal, M. K., Sethia, R., Chaudhary, V., Baidya, S., & Mahajan, V. (2022). Disaster damages and losses: study of underlying causes. NIDM, New Delhi. http://dx.doi.org/10.13140/RG.2.2.27342.74566

Hallegatte, S. (2015). The indirect cost of natural disasters and an economic definition of macroeconomic resilience. World Bank policy research working paper, (7357). https://ssrn.com/abstract=2626266

Haq, M., Akhtar, M., Muhammad, S., Paras, S., & Rahmatullah, J. (2012). Techniques of remote sensing and GIS for flood monitoring and damage assessment: a case study of Sindh province, Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 15(2), 135-141. https://doi.org/10.1016/j.ejrs.2012.07.002

Hirsch, T., Minninger, S., Wirsching, S., Toroitich, I., Cedillo, E., Hermans, M., ... & Ahmed, E. (2017). Non-economic loss and damage–with case examples from Tanzania, Ethiopia, El Salvador and Bangladesh. Bread for the World, Berlin, Germany.

Hoyos, M. C., & Silva, V. (2022). Exploring benefit cost analysis to support earthquake risk mitigation in Central America. International Journal of Disaster Risk Reduction, 80, 103162. https://doi.org/10.1016/j.ijdrr.2022.103162

Irawan, A. M., Marfai, M. A., Nugraheni, I. R., Gustono, S. T., Rejeki, H. A., Widodo, A., ... & Faridatunnisa, M. (2021). Comparison between averaged and localised subsidence measurements for coastal floods projection in 2050 Semarang, Indonesia. Urban Climate, 35, 100760. https://doi.org/10.1016/j.uclim.2020.100760

Islam, H. S., Suryoputro, A. A. D., & Handoyo, G. (2023). Studi Perubahan Garis Pantai 2017–2021 di Pesisir Kabupaten Batang, Jawa Tengah. Indonesian Journal of Oceanography, 4(4), 19-33. https://ejournal2.undip.ac.id/index.php/ijoceDiterima/

Kazama, S., Sato, A., & Kawagoe, S. (2010). Evaluating the cost of flood damage based on changes in extreme rainfall in Japan. In Adaptation and mitigation strategies for climate change (pp. 3-17). Springer Japan. https://doi.org/10.1007/978-4-431-99798-6_1

Khan, M. T. I., Anwar, S., Sarkodie, S. A., Yaseen, M. R., & Nadeem, A. M. (2023). Do natural disasters affect economic growth? The role of human capital, foreign direct investment, and infrastructure dynamics. Heliyon, 9(1). https://doi.org/10.1016/j.heliyon.2023.e12911

Lim, C., Kim, T. K., & Lee, J. L. (2022). Evolution model of shoreline position on sandy, wave-dominated beaches. Geomorphology, 415, 108409. https://doi.org/10.1016/j.geomorph.2022.108409

Lin, S. C., Wu, T. R., Yen, E., Chen, H. Y., Hsu, J., Tsai, Y. L., & Lee, C. J. (2015). Development of a tsunami early warning system for the South China Sea. Ocean Engineering, 100, 1-18. https://doi.org/10.1016/j.oceaneng.2015.02.003

Llinas, J. (2002, July). Information fusion for natural and man-made disasters. In Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002.(IEEE Cat. No. 02EX5997) (Vol. 1, pp. 570-576). IEEE. https://doi.org/10.1109/ICIF.2002.1021205

Middelmann‐Fernandes, M. H. (2010). Flood damage estimation beyond stage–damage functions: an Australian example. Journal of Flood Risk Management, 3(1), 88-96. https://doi.org/10.1111/j.1753-318X.2009.01058.x

Mitchell-Wallace, K., Jones, M., Hillier, J., & Foote, M. (2017). Natural catastrophe risk management and modelling: A practitioner's guide. John Wiley & Sons. https://doi.org/10.1002/9781118906057

Mizutori, M. (2020). Reflections on the Sendai framework for disaster risk reduction: Five years since its adoption. International Journal of Disaster Risk Science, 11(2), 147-151. https://doi.org/10.1007/s13753-020-00261-2

Mohammadi, S. A., Nazariha, M., & Mehrdadi, N. (2014). Flood damage estimate (quantity), using HEC-FDA model. Case study: the Neka river. Procedia Engineering, 70, 1173-1182. https://doi.org/10.1016/j.proeng.2014.02.130

Narayan, P. K. (2003). Macroeconomic impact of natural disasters on a small island economy: evidence from a CGE model. Applied Economics Letters, 10(11), 721-723. https://doi.org/10.1080/1350485032000133372

Notaro, V., De Marchis, M., Fontanazza, C. M., La Loggia, G., Puleo, V., & Freni, G. (2014). The effect of damage functions on urban flood damage appraisal. Procedia Engineering, 70, 1251-1260. https://doi.org/10.1016/j.proeng.2014.02.138

Okuyama, Y. (2007). Economic modeling for disaster impact analysis: past, present, and future. Economic Systems Research, 19(2), 115-124. https://doi.org/10.1080/09535310701328435

Olbert, A. I., Comer, J., Nash, S., & Hartnett, M. (2017). High-resolution multi-scale modelling of coastal flooding due to tides, storm surges and rivers inflows. A Cork City example. Coastal Engineering, 121, 278-296. https://doi.org/10.1016/j.coastaleng.2016.12.006

Oliveri, E., & Santoro, M. (2000). Estimation of urban structural flood damages: the case study of Palermo. Urban Water, 2(3), 223-234. https://doi.org/10.1016/S1462-0758(00)00062-5

Phong, N. T., Quang, N. H., & Van Sang, T. (2022). Shoreline change and community-based climate change adaptation: Lessons learnt from Brebes Regency, Indonesia. Ocean & coastal management, 218, 106037. https://doi.org/10.1016/j.ocecoaman.2022.106037

Rasyif, T. M., Fritz, H. M., Idris, Y., & Rusydy, I. (2023). Fragility based characterization of alternative tsunami evacuation buildings in Banda Aceh, Indonesia. International Journal of Disaster Risk Reduction, 88, 103607. https://doi.org/10.1016/j.ijdrr.2023.103607

Ring, I., Hansjürgens, B., Elmqvist, T., Wittmer, H., & Sukhdev, P. (2010). Challenges in framing the economics of ecosystems and biodiversity: the TEEB initiative. Current Opinion in Environmental Sustainability, 2(1-2), 15-26. https://doi.org/10.1016/j.cosust.2010.03.005

Rose, A., & Lim, D. (2002). Business interruption losses from natural hazards: conceptual and methodological issues in the case of the Northridge earthquake. Global Environmental Change Part B: Environmental Hazards, 4(1), 1-14. https://doi.org/10.3763/ehaz.2002.0401

Sandoval, V., Voss, M., Flörchinger, V., Lorenz, S., & Jafari, P. (2023). Integrated disaster risk management (IDRM): elements to advance its study and assessment. International Journal of Disaster Risk Science, 14(3), 343-356. https://doi.org/10.1007/s13753-023-00490-1

Ward, P. J., Marfai, M. A., Yulianto, F., Hizbaron, D. R., & Aerts, J. C. J. H. (2011). Coastal inundation and damage exposure estimation: a case study for Jakarta. Natural Hazards, 56(3), 899-916. https://doi.org/10.1007/s11069-010-9599-1

Weitzman, M. L. (2009). On modeling and interpreting the economics of catastrophic climate change. The review of economics and statistics, 91(1), 1-19. https://doi.org/10.1162/rest.91.1.1

Weniza, W., Gusman, A. R., Puspito, N. T., Rahayu, H. P., Harig, S., Hanifa, N. R., ... & Karnawati, D. (2023). Rapid tsunami inundation forecast using pre-computed earthquake scenarios and offshore data. Coastal Engineering, 184, 104353. https://doi.org/10.1016/j.coastaleng.2023.104353

Wood, N., Peters, J., Cheung, K. F., Yamazaki, Y., Calvo, D., & Guard, C. (2023). Modeling non-structural strategies to reduce pedestrian evacuation times for mitigating local tsunami threats in Guam. International journal of disaster risk reduction, 95, 103859. https://doi.org/10.1016/j.ijdrr.2023.103859

Wu, X., & Guo, J. (2021). Comprehensive economic loss assessment of disaster based on CGE model and IO model—A case study on Beijing “7.21 Rainstorm”. In Economic impacts and emergency management of disasters in China (pp. 105-136). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-1319-7_4

Wu, X., Zhou, L., Gao, G., Guo, J., & Ji, Z. (2016). Urban flood depth-economic loss curves and their amendment based on resilience: evidence from Lizhong Town in Lixia River and Houbai Town in Jurong River of China. Natural Hazards, 82(3), 1981-2000. https://doi.org/10.1007/s11069-016-2281-5

Downloads

Published

2025-02-28

Issue

Section

Articles

Citation Check