Innovative control of fruit fly (Bactrocera dorsalis) on tomato plants (Solanum lycopersicum) using the push-pull technique for sustainable food security

Authors

  • Najwa Zati Hulwani Department of Postharvest Technology, School of Life Sciences and Technology, Institut Teknologi Bandung, Jatinangor, West Java 45363, Indonesia
  • Adira Hestriyasha Department of Postharvest Technology, School of Life Sciences and Technology, Institut Teknologi Bandung, Jatinangor, West Java 45363, Indonesia
  • Angela Valentina Department of Postharvest Technology, School of Life Sciences and Technology, Institut Teknologi Bandung, Jatinangor, West Java 45363, Indonesia

DOI:

https://doi.org/10.61511/jassu.v3i1.2025.1891

Keywords:

Bactrocera dorsalis, integrated pest management (IPM), push-pull, Solanum lycopersicum, sustainable agriculture, food security

Abstract

Background: Pesticide residues in tomato (Solanum lycopersicum) cultivation pose serious health and environmental risks, exacerbated by the excessive use of synthetic pesticides to control fruit fly pests (Bactrocera dorsalis). This review aims to evaluate the push-pull technique an integrated pest management strategy using repellent plants like lemongrass (Cymbopogon nardus) and attractant plants such as basil (Ocimum basilicum), supported by yellow sticky traps as a sustainable solution for fruit fly control. Methods: This systematic literature review was conducted by screening 1,300 articles from scientific databases within the last 10 years using PRISMA guidelines, from which 4 studies were ultimately selected for qualitative synthesis. Findings: Based on the analysis of secondary literature, the synthesis of results shows that lemongrass releases volatile compounds capable of suppressing fruit fly populations by up to 40-60%, while basil and yellow sticky traps effectively lure fruit flies away from the main crop and can reduce infestation rates by 35-55%. This combination effectively suppresses pests, reduces dependency on chemical pesticides, and supports food security by stabilizing production. Conclusion: It should be noted that these findings are derived from a narrative data synthesis of secondary literature, not primary field trials, and this review does not include a quantitative meta-analysis to statistically measure the combined effect. This study concludes that the wider adoption of the push-pull system, coupled with farmer training and technological integration, offers an eco-friendly and efficient alternative for horticultural pest management. Novelty/Originality of this article: The novelty/originality of this article lies in systematically reviewing the push-pull technique combining lemongrass, basil, and yellow sticky traps as an eco-friendly integrated strategy for controlling tomato fruit fly pests.

References

Abdullah, S., Abbas, K., Ali, H., Abdelmagid, F., & Adam, A. (2020). Assessment of Ocimum basilicum as potentially fruit flies attractant. Journal of Automated Reasoning, 2, 34–42. https://doi.org/10.14302/issn.2639-3166.jar-20-3250

Alkema, J., Dicke, M., & Wertheim, B. (2019). Context-dependence and the development of push-pull approaches for integrated management of Drosophila suzukii. Insects, 10, 1–10. https://doi.org/10.3390/insects10120454

Badan Pusat Statistik. (2024). Statistik Hortikultura 2023. Badan Pusat Statistik. https://www.bps.go.id/id/publication/2024/06/10/790c957ba8892f9771aeefb7/statistik-hortikultura-2023.html

Bay, M. M., & Pakaenoni, G. (2021). Potensi serangan hama lalat buah Bactrocera sp. (Diptera: Tephritidae) pada beberapa komoditas hortikultura di Pasar Rakyat Kota Kefamenanu. Savana Cendana, 6(1), 1–3. https://doi.org/10.32938/sc.v6i01.1200

Benton, R. (2022). Drosophila olfaction: Past, present and future. Proceedings of the Royal Society B, 289. https://doi.org/10.1098/rspb.2022.2054

Bhoye, S. (2024). Studies of tomato fruit flies (Neoceratitis cyanescens): A serious pest on tomato crop. Chronicle of Aquatic Science, 1(10), 194-198. https://doi.org/10.61851/coas.v1i10.17

Bughdady, A., Mehna, A., & Amin, T. (2020). Effectiveness of some synthetic insecticides against the whitefly, Bemisia tabaci on tomato, Lycopersicon esculentum Mill. and infestation impacts on certain photosynthetic pigments concentrations of tomato plant leaves. Journal of Productivity and Development, 25(3), 307–321. https://doi.org/10.21608/jpd.2020.126072

Cardoso, A. C., Marcossi, Í., Fonseca, M. M., (2025). A predatory mite as potential biological control agent of Bemisia tabaci on tomato plants. Journal of Pest Science, 98(2), 277–289. https://doi.org/10.1007/s10340-024-01809-7

Chang, C., Cho, I., & Li, Q. (2009). Insecticidal activity of basil oil, trans-anethole, estragole, and linalool to adult fruit flies of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae. Journal of Economic Entomology, 102(1), 203–209. https://doi.org/10.1603/029.102.0129

Chittrakul, J., Sapbamrer, R., & Hongsibsong, S. (2022). Exposure to organophosphate insecticides, inappropriate personal protective equipment use, and cognitive performance among pesticide applicators. Frontiers in Public Health, 10, 1060284. https://doi.org/10.3389/fpubh.2022.1060284

Conboy, N., McDaniel, T., George, D., Ormerod, A., Edwards, M., Donohoe, P., Gatehouse, A., & Tosh, C. (2020). Volatile organic compounds as insect repellents and plant elicitors: An integrated pest management (IPM) strategy for glasshouse whitefly (Trialeurodes vaporariorum). Journal of Chemical Ecology, 46(11–12), 1090–1104. https://doi.org/10.1007/s10886-020-01229-8

Cook, S. M., Khan, Z. R., & Pickett, J. A. (2007). The use of push-pull strategies in integrated pest management. Annual Review of Entomology, 52(1), 375–400. https://doi.org/10.1146/annurev.ento.52.110405.091407

Dharmawan, I. (2023, November 28). Indonesia pengguna pestisida terbesar ketiga dunia, tapi riset efeknya masih kurang. Edisi.co. https://edisi.co/2023/11/28/indonesia-pengguna-pestisida-terbesar-ketiga-dunia-tapi-riset-efeknya-masih-kurang/

Dimase, M., Lahiri, S., Beuzelin, J., Hutton, S., & Smith, H. (2024). Evaluation of biopesticides for management of Bemisia tabaci Middle East-Asia Minor 1 (Hemiptera: Aleyrodidae) in Florida. Insects, 15(6), 438. https://doi.org/10.3390/insects15060438

Eigenbrode, S., Birch, N., Lindzey, S., Meadow, R., & Snyder, W. (2015). A mechanistic framework to improve understanding and applications of push-pull systems in pest management. Journal of Applied Ecology, 53, 202–212. https://doi.org/10.1111/1365-2664.12556

Eschweiler, J., Van Holstein-Saj, R., Kruidhof, H., Schouten, A., & Messelink, G. (2019). Tomato inoculation with a non-pathogenic strain of Fusarium oxysporum enhances pest control by changing the feeding preference of an omnivorous predator. Frontiers in Ecology and Evolution, 6, 213. https://doi.org/10.3389/fevo.2019.00213

Essam, E., Eldosooky, I., Walid, H., Ammar, J., Wahba, I., & Ibrahim, A. (2022). The efficacy of certain insecticides against whitefly, Bemisia tabaci (Genn.) on tomato and their effects on fruit quality. Polish Journal of Entomology, 91(3), 137–148. https://doi.org/10.5604/01.3001.0016.0404

Garcia, F., Ovruski, S., Suárez, L., Cancino, J., & Liburd, O. (2020). Biological control of tephritid fruit flies in the Americas and Hawaii: A review of the use of parasitoids and predators. Insects, 11(10), 662. https://doi.org/10.3390/insects11100662

Gatahi, D. M. (2020). Challenges and opportunities in tomato production chain and sustainable standards. International Journal of Horticultural Science and Technology. Deepublish. https://doi.org/10.22059/IJHST.2020.300818.361

Handoyo, A. (2014). Studi kasus kejadian luar biasa keracunan pangan di Desa Jembungan Kecamatan Banyudono Boyolali (Unpublished master's thesis). Universitas Muhammadiyah Surakarta. https://eprints.ums.ac.id/32158/

Ingels, R., Bosmans, L., Pekas, A., Huysmans, M., & Moerkens, R. (2022). Preference and plant damage caused by Nesidiocoris tenuis on twenty-one commercial tomato cultivars. Journal of Pest Science, 95(4), 1577-1587. 10.1007/s10340-022-01530-3

Ivezić, A., Popović, T., Trudić, B., Krndija, J., Barošević, T., Sarajlić, A., & Kuzmanović, B. (2025). Biological control agents in greenhouse tomato production (Solanum lycopersicum L.): Possibilities, challenges and policy insights for Western Balkan region. Horticulturae, 11(2), 155. https://doi.org/10.3390/horticulturae11020155

Jaffar, S., & Lu, Y. (2022). Toxicity of some essential oils constituents against oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Insects, 13(10), 954. https://doi.org/10.3390/insects13100954

Jahanbakhshi, A., Sharabiani, V., Heidarbeigi, K., Kaveh, M., & Taghinezhad, E. (2019). Evaluation of engineering properties for waste control of tomato during harvesting and postharvesting. Food Science & Nutrition, 7(4), 1473–1481. https://doi.org/10.1002/fsn3.986

Khan, Z.R., Pittchar, J.O., Midega, C.A.O. & Pickett, J.A. (2018). Push-pull farming system controls fall armyworm: lessons from Africa. Outlook on pest management, 29(5), -224. https://doi.org/10.1564/v29_oct_09

Legaspi, J., Bolques, A., Ospina, F., Tian, S., Díaz-Pérez, J. C., Hodges, A. C., ... & Zhao, X. (2024). “Push-pull” technology and companion planting: A dual strategy for insect pest management in high tunnel vegetable production and organic systems: HS1486, 9/2024. EDIS, 2024(5). https://doi.org/10.32473/edis-hs1486-2024

Li, H., Zhang, Y., Li, H., Reddy, G., Li, Z., Chen, F., Sun, Y., & Zhao, Z. (2023). The nitrogen-dependent GABA pathway of tomato provides resistance to a globally invasive fruit fly. Frontiers in Plant Science, 14, 1252455. https://doi.org/10.3389/fpls.2023.1252455

Mala, M., Baishnab, M., & Mollah, M. M. I. (2020). Push-pull strategy: An integrated approach to manage insect-pest and weed infestation in cereal cropping systems. Journal of Bioscience and Agriculture Research, 25(2), 2122–2127. https://doi.org/10.18801/jbar.250220.259

Mallick, A., Dacks, A. M., & Gaudry, Q. (2025). Olfactory critical periods: How odor exposure shapes the developing brain in mice and flies. Biology, 13(2), 94. https://doi.org/10.3390/biology13020094

Mao, L., Zhang, L., Wang, S., Zhang, Y., Zhu, L., Jiang, H., & Liu, X. (2022). Application of insecticides by soil drenching before seedling transplanting combined with anti-insect nets to control tobacco whitefly in tomato greenhouses. Scientific Reports, 12, 20294. https://doi.org/10.1038/s41598-022-20294-5

Meats, A., Beattie, A., Ullah, F., & Bingham, S. (2012). To push, pull or push-pull? A behavioural strategy for protecting small tomato plots from tephritid fruit flies. Crop Protection, 36, 1–6. https://doi.org/10.1016/j.cropro.2012.02.002

Mefta, F., & Fauzana, H. (2021). Uji beberapa dosis minyak daun kemangi Ocimum basilicum Linnaeus sebagai atraktan terhadap Bactrocera spp. pada tanaman cabai. Jurnal Proteksi Tanaman, 5(1), 12–23. https://doi.org/10.25077/jpt.5.1.12-23.2021

Niassy, S. (2023). Response of some mango-infesting fruit flies to aqueous solutions of the basil plant Ocimum tenuiflorum L. Frontiers in Horticulture, 2. https://doi.org/10.3389/fhort.2023.1139525

Palang, M., Kleden, Y. L., & Iburuni, Y. U. (2023). Tomato fruit damage intensity (Lycopersicum esculentum Mill) caused by fruit flies (Bactrocera spp.) at the Net Mollo Farmer's Group in Boentuka Village Batu Putih District Batu Putih District South Central Timor Regency. Prosiding Seminar Nasional Pertanian, 1(1), 367–374. https://conference.undana.ac.id/index.php/SNPERTA/article/view/613/533

Parker, J. E., Snyder, W. E., Hamilton, G. C., & Rodriguez-Saona, C. (2013). Companion planting and insect pest control. In Weed and Pest Control-Conventional and New Challenges, 10, 55044. https://doi.org/10.5772/55044

Pawlak, K., & Kołodziejczak, M. (2020). The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production. Sustainability, 12(13), 5488. https://doi.org/10.3390/su12135488

Roberts-McEwen, T. A., Deutsch, E. K., Mowery, M. A., & Grinsted, L. (2022). Group-living spider Cyrtophora citricola as a potential novel biological control agent of the tomato pest Tuta absoluta. Insects, 14(1), 34. https://doi.org/10.3390/insects14010034

Roberts-McEwen, T., Deutsch, E., Mowery, M., & Grinsted, L. (2022). Group-living spider Cyrtophora citricola as a potential novel biological control agent of the tomato pest Tuta absoluta. Insects, 14(1), 34. https://doi.org/10.3390/insects14010034

Roh, G., Kendra, P., Zhu, J., Roda, A., Loeb, G., Tay, J., & Cha, D. (2023). Coconut oil derived five-component synthetic oviposition deterrent for oriental fruit fly, Bactrocera dorsalis. Pest Management Science, 79(10), 3852-3859. https://doi.org/10.1002/ps.7584

Roohigohar, S., Clarke, A., Strutt, F., Van Der Burg, C., & Prentis, P. (2022). Fruit fly larval survival in picked and unpicked tomato fruit of differing ripeness and associated gene expression patterns. Insects, 13(5), 451. https://doi.org/10.3390/insects13050451

Saenong, M. S. (2016). Tumbuhan Indonesia potensial sebagai insektisida nabati untuk mengendalikan hama kumbang bubuk jagung (Sitophilus spp.). Jurnal Penelitian dan Pengembangan Pertanian, 35(3), 131–142. https://doi.org/10.21082/jp3.v35n3.2016.p131-142

Salam, R., Devi, H., Neog, P., Imtinaro, L., Singh, Y., Devi, H., & Singh, W. (2023). Efficacy of insecticides against major insects of tomato in Manipur. International Journal of Environment and Climate Change, 13(8), 2028. https://doi.org/10.9734/ijecc/2023/v13i82028

Saputra, A. A., Mulyadi, D., & Khumaisah, L. L. (2020). Uji efektivitas formula e-liquid minyak sereh wangi (Cymbopogon nardus L.) sebagai repelan terhadap Aedes aegypti. Chimica et Natura Acta, 8(3), 126–132. https://doi.org/10.24198/cna.v8.n3.26257

Setlight, M. D., Meray, E. R. M., & Lengkong, M. (2019). Jenis dan serangan hama lalat buah (Bactrocera dorsalis) pada tanaman tomat (Solanum lycopersicum L.) di Desa Taraitak Kecamatan Langowan Utara Kabupaten Minahasa. Cocos, 2(6), 1–8. https://doi.org/10.35791/cocos.v2i6.25768

Suprehatin. (2019). Characteristics of farmer adopters of high value horticultural crops in Indonesia. Jurnal Manajemen & Agribisnis, 16(2), 181-190. https://doi.org/10.17358/jma.16.2.181

Susilowati, S., Djarwatiningsih, D., Panjaitan, R., Putra, S. B., Wahyusi, K. N., Pujiastuti, C., & Moenandar, S. (2024). Pemanfaatan lahan tidur untuk budidaya serai wangi di Kosagrha Lestari Medokan Ayu Selatan, Rungkut. SELAPARANG: Jurnal Pengabdian Masyarakat Berkemajuan, 8(1), 43–51. https://doi.org/10.31764/jpmb.v8i1.21616

Tangpao, T., Krutmuang, P., Kumpoun, W., Jantrawut, P., Pusadee, T., Cheewangkoon, R., Sommano, S., & Chuttong, B. (2021). Encapsulation of basil essential oil by paste method and combined application with mechanical trap for oriental fruit fly control. Insects, 12(7), 633. https://doi.org/10.3390/insects12070633

University of Florida IFAS Extension (2023). Oriental Fruit Fly, Bactrocera dorsalis (Hendel). EDIS IN240. https://edis.ifas.ufl.edu/publication/IN240

Utami, R. R., Geerling, G. W., Salami, I. R. S., Notodarmojo, S., & Ragas, A. M. J. (2020). Agricultural pesticide use in the Upper Citarum River Basin: Basic data for model-based risk management. Journal of Environmental Science and Sustainable Development, 3(2), 235–260. https://doi.org/10.7454/jessd.v3i2.1076

Wallingford, A., Cha, D., & Loeb, G. (2018). Evaluating a push-pull strategy for management of Drosophila suzukii Matsumura in red raspberry. Pest Management Science, 74(1), 120–125. https://doi.org/10.1002/ps.4666

Wan, N. F., Fu, L., & Dainese, M. (2025). Pesticides have negative effects on non-target organisms. Nature Communications, 16, 1360. https://doi.org/10.1038/s41467-025-56732-x

Published

2025-07-30

How to Cite

Hulwani, N. Z., Hestriyasha, A., & Valentina, A. (2025). Innovative control of fruit fly (Bactrocera dorsalis) on tomato plants (Solanum lycopersicum) using the push-pull technique for sustainable food security. Journal of Agrosociology and Sustainability, 3(1). https://doi.org/10.61511/jassu.v3i1.2025.1891

Issue

Section

Articles

Citation Check