Evaluating the yield potential of the mutant (M6) short stem Mentik Wangi rice varieties developed through 200-gray gamma irradiation

Authors

  • Rifqi Himawan Agrotechnology Study Program, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta City, Central Java 57126, Indonesia
  • Ahmad Yunus Agrotechnology Study Program, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta City, Central Java 57126, Indonesia
  • Parjanto Agrotechnology Study Program, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta City, Central Java 57126, Indonesia
  • Edi Purwanto Agrotechnology Study Program, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta City, Central Java 57126, Indonesia

DOI:

https://doi.org/10.61511/jassu.v2i2.2025.1463

Keywords:

Mentik Wangi mutant rice, gamma irradiation (200 Gy), yield improvement

Abstract

Background: Mentik Wangi, a traditional aromatic rice variety, faces challenges such as prolonged growth duration and lodging susceptibility, limiting its productivity. The study aimed to evaluate the yield potential and identify high-performing mutant lines of Mentik Wangi rice induced by 200 Gy gamma irradiation. This study addresses the growing need for rice varieties with improved traits to enhance food security in Indonesia. Methods: The research was conducted at the Tegalgondo Rice Seed Garden using a randomized complete block design (RCBD) with three replications. The study included 12 M6 mutant lines of Mentik Wangi rice generated through 200 Gy gamma irradiation. Data were collected on plant growth, yield attributes, and grain quality. Statistical analyses were performed using ANOVA and Duncan's Multiple Range Test to evaluate the significance of observed traits. Findings: The results revealed significant variations among mutant lines for key yield components, including grains per panicle, 100-grain weight, and productivity per hectare. The line M6-MW2-G70-01-14-4-8 demonstrated the highest productivity at 7.29 tons/ha, while all mutant lines exceeded the productivity of the control (3.78 tons/ha). Gamma irradiation was effective in inducing beneficial mutations, enhancing traits such as early maturity, short stems, and higher grain density. Conclusion: The study successfully identified mutant lines of Mentik Wangi rice with improved yield potential and agronomic traits, demonstrating the effectiveness of gamma irradiation as a crop improvement strategy. Novelty/Originality of this article: This research presents innovative findings on the use of gamma irradiation to enhance the productivity and agronomic traits of a traditional rice variety, contributing to the development of high-yielding and locally adapted rice lines.

References

Anila, M., Mahadeva Swamy, H. K., Kale, R. R., Bhadana, V. P., Anantha, M. S., Brajendra, ... & Sundaram, R. M. (2018). Breeding lines of the Indian mega-rice variety, MTU 1010, possessing protein kinase OsPSTOL (Pup1), show better root system architecture and higher yield in soils with low phosphorus. Molecular Breeding, 38, 1-9. https://doi.org/10.1007/s11032-018-0903-1

Bahuguna, R. N., Solis, C. A., Shi, W., & Jagadish, K. S. (2017). Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryza sativa L.). Physiologia plantarum, 159(1), 59–73. https://doi.org/10.1111/ppl.12485

Borzouei, A., Kafi, M., Khazaei, H., Naseriyan, B., & Majdabadi, A. (2010). Effects of gamma radiation on germination and physiological aspects of wheat (Triticum aestivum L.) seedlings. Journal of Botany, 42(4), 2281-2290.

Chen, S., Liu, S., Zheng, X., Yin, M., Chu, G., Xu, C., Yan, J., Chen, L., Wang, D., & Zhang, X. (2018). Effect of various crop rotations on rice yield and nitrogen use efficiency in paddy–upland systems in southeastern China. The Crop Journal, 6(6), 576–588. https://doi.org/10.1016/j.cj.2018.07.007

Daeli, N. D. S., Putri, L. A., & Nuriadi, I. (2013). Pengaruh radiasi sinar gamma terhadap kacang hijau (Vigna radiata L.) pada kondisi salin. Jurnal Online Agroekoteknologi, 1(2), 227-237. https://doi.org/10.32734/jaet.v1i2.1540

Dewi, S. S., Roedy, S., & Agus, S. (2014). Kajian pola tanam tumpangsari padi gogo (Oryza sativa L.) dengan jagung manis (Zea mays saccharata Sturt L.). Jurnal Produksi Tanaman, 2(2), 137-144. https://protan.studentjournal.ub.ac.id/index.php/protan/article/view/89

Donggulo, C. V., Lapanjang, I. M., & Made, U. (2017). Pertumbuhan dan hasil tanaman padi (Oryza sativa L) pada berbagai pola jajar legowo dan jarak tanam. Agroland: Jurnal Ilmu-ilmu Pertanian, 24(1), 27-35. http://jurnal.faperta.untad.ac.id/index.php/agrolandnasional/issue/archive

Gasparis, S., & Miłoszewski, M. M. (2023). Genetic Basis of Grain Size and Weight in Rice, Wheat, and Barley. International journal of molecular sciences, 24(23), 16921. https://doi.org/10.3390/ijms242316921

Hamdan, M. F., & Tan, B. C. (2024). Genetic modification techniques in plant breeding: A comparative review of CRISPR/Cas and GM technologies. Horticultural Plant Journal. Advance online publication. https://doi.org/10.1016/j.hpj.2024.02.012

Katsura, K., Maeda, S., Lubis, I., Horie, T., Cao, W., & Shiraiwa, T. (2008). The high yield of irrigated rice in Yunnan, China: A cross-location analysis. Field Crops Research, 107(1), 1-11. https://doi.org/10.1016/j.fcr.2007.12.007

Khursheed, S., & Khan, S. (2016). Genetic improvement of two cultivars of faba bean using gamma irradiation and ethyl methanesulphonate mutagenesis. International Journal of Legume Research, 39(4), 544-552. https://doi.org/10.18805/lr.v0iOF.9614

Kim, K. H., & Lee, B. M. (2023). Effects of climate change and drought tolerance on maize growth. Plants (Basel, Switzerland), 12(20), 3548. https://doi.org/10.3390/plants12203548

Kodir, K. A., Juwita, Y., & Arif, T. (2016). Inventarisasi dan karakteristik morfologi padi lokal lahan rawa di Sumatera Selatan. Buletin Plasma Nutfah, 22(2), 101-108. https://doi.org/10.21082/blpn.v22n2.2016.p101-108

Kondombo, C. P., Kaboré, P., Kambou, D., & Ouédraogo, I. (2024). Assessing yield performance and stability of local sorghum genotypes: A methodological framework combining multi-environment trials and participatory multi-trait evaluation. Heliyon, 10(4), e25114. https://doi.org/10.1016/j.heliyon.2024.e25114

Li, G., Zhang, H., Li, J., Zhang, Z., & Li, Z. (2021). Genetic control of panicle architecture in rice. The Crop Journal, 9(3), 590–597. https://doi.org/10.1016/j.cj.2021.02.004

Ma’sum, F. Q., Kurniasih, B., & Ambarwati, E. (2016). Pertumbuhan dan hasil padi sawah (Oryza sativa L.) pada beberapa takaran kompos jerami dan zeolit. Jurnal Vegetalika, 5(3), 29-40. https://jurnal.ugm.ac.id/jbp/article/view/25348

Makarim, A. K., & Suhartatik, E. (2009). Morfologi dan fisiologi tanaman padi (Edisi ke-1). LIPI Press.

Mangoendidjojo, W. (2003). Dasar-dasar Pemuliaan Tanaman. Yogyakarta Kanisus.

Mullins, E., Bresson, J. L., Dalmay, T., Dewhurst, I. C., Epstein, M. M., Firbank, L. G., …, & Rostoks, N. (2021). In vivo and in vitro random mutagenesis techniques in plants. EFSA journal. European Food Safety Authority, 19(11), e06611. https://doi.org/10.2903/j.efsa.2021.6611

Oo, K. S., Krishnan, S. G., Vinod, K. K., Dhawan, G., Dwivedi, P., Kumar, P., ... & Singh, A. K. (2021). Molecular breeding for improving productivity of Oryza sativa L. cv. Pusa 44 under reproductive stage drought stress through introgression of a major QTL, qDTY12. 1. Genes, 12(7), 967. https://doi.org/10.3390/genes12070967

Phillips, S. L., & Wolfe, M. S. (2009). Evolutionary plant breeding for low input systems. Journal of Agricultural Science, 143(3), 245-254. https://doi.org/10.1017/S0021859605005009

Prabhandaru, I., & Saputro, T. B. (2017). Respon perkecambahan benih padi (Oryza sativa L.) varietas lokal Si Gadis hasil radiasi sinar gamma. Jurnal Sains dan Seni, 6(2), E48-E52. https://ejurnal.its.ac.id/index.php/sains_seni/article/view/25544/4061

Salgotra, R. K., & Chauhan, B. S. (2023). Genetic diversity, conservation, and utilization of plant genetic resources. Genes, 14(1), 174. https://doi.org/10.3390/genes14010174

Shelton, A. C., & Tracy, W. F. (2017). Cultivar development in the US public sector. Crop Science, 57(4), 1823-1835. https://doi.org/10.2135/cropsci2016.11.0961

Sibarani, I. B., & Hanafiah, D. S. (2015). Respon morfologi tanaman kedelai (Glycine max L. Merrill) varietas anjasmoro terhadap beberapa iradiasi sinar gamma. Jurnal Agroekoteknologi Universitas Sumatera Utara, 3(2), 515-526. https://doi.org/10.32734/jaet.v3i2.10136

Sitaresmi, T., Wening, R. H., Rakhmi, A. T., Yunani, N., & Susanto, U. (2013). Pemanfaatan plasma nutfah padi varietas lokal dalam perakitan varietas unggul. Jurnal Iptek Tanaman Pangan, 8(1), 22-30. https://repository.pertanian.go.id/items/04cd98b3-426d-4109-997f-ee27e86468b7

Tu, D., Jiang, Y., Salah, A., Cai, M., Peng, W., Zhang, L., Li, C., & Cao, C. (2022). Response of source-sink characteristics and rice quality to high natural field temperature during reproductive stage in irrigated rice system. Frontiers in plant science, 13, 911181. https://doi.org/10.3389/fpls.2022.911181

Viana, V. E., Pegoraro, C., Busanello, C., & Costa de Oliveira, A. (2019). Mutagenesis in Rice: The Basis for Breeding a New Super Plant. Frontiers in plant science, 10, 1326. https://doi.org/10.3389/fpls.2019.01326

Wang, D. R., Jamshidi, S., Han, R., Edwards, J. D., McClung, A. M., & McCouch, S. R. (2024). Positive effects of public breeding on US rice yields under future climate scenarios. Proceedings of the National Academy of Sciences of the United States of America, 121(13), e2309969121. https://doi.org/10.1073/pnas.2309969121

Warid, Khumaida, N., Agus, P., & Syukur, M. (2017). Pengaruh iradiasi sinar gamma pada generasi pertama (M1) untuk mendapatkan genotipe unggul baru kedelai toleran kekeringan. Journal of Agricultural Science, 7(1), 1-98. https://ojs.unud.ac.id/index.php/agrotrop/article/view/32634/19746

Wirnas, D. I., Widodo, Sobir, Trikoesoemaningtyas, & Sopandie, D. (2006). Pemilihan karakter agronomi untuk menyusun indeks seleksi pada 11 populasi kedelai generasi F6. Jurnal Agronomi Indonesia, 34, 19-24. https://journal.ipb.ac.id/index.php/jurnalagronomi/article/view/1270

Wu, Y., Yu, W., Gu, Y., Zhang, Q., Xiong, Y., Zheng, H., Jiang, C., Yao, X., Zhu, Y., Cao, W., & Cheng, T. (2025). Accurate estimation of grain number per panicle in winter wheat by synergistic use of UAV imagery and meteorological data. International Journal of Applied Earth Observation and Geoinformation, 136, 104320. https://doi.org/10.1016/j.jag.2024.104320

Zhai, L., Yan, A., Shao, K., Wang, S., Wang, Y., Chen, Z. H., & Xu, J. (2023). Large Vascular Bundle Phloem Area 4 enhances grain yield and quality in rice via source–sink–flow. Plant Physiology, 191(1), 317-334. https://doi.org/10.1093/plphys/kiac461

Downloads

Published

2025-01-31

How to Cite

Himawan, R., Yunus, A., Parjanto, & Purwanto, E. (2025). Evaluating the yield potential of the mutant (M6) short stem Mentik Wangi rice varieties developed through 200-gray gamma irradiation. Journal of Agrosociology and Sustainability, 2(2), 152–167. https://doi.org/10.61511/jassu.v2i2.2025.1463

Issue

Section

Articles

Citation Check