Growth responses of cherry tomato plants (Solanum lycopersicum L.) under elevated temperature and different nitrogen doses
DOI:
https://doi.org/10.61511/jassu.v2i2.2025.1370Keywords:
global warming, horticulture, morphology, nitrogenAbstract
Background : Cherry tomatoes are one of the horticultural crops that can potentially be cultivated with household farming systems to fulfil the food supply. The increasing global temperature caused by climate change makes growing cherry tomato plants challenging. Besides that, nitrogen efficiency in the cultivating process of cherry tomato plants is crucial. This study aims to know the growth responses of cherry tomato plants in temperature and nitrogen doses. Methods: A completely randomized design with two factors was used for this study. The first factor was the temperature (normal and high-temperature treatment). The second factor was the nitrogen doses (55 ppm, 110 ppm, and 165 ppm). Observations of growth characteristics included plant height, leaf number, stem diameter, root length, root fresh weight, root dry weight, root-shoot ratio, shoot fresh weight, shoot dry weight, plant canopy diameter, and growth index. Findings: On day 8, normal temperature was the best result for enhancing the number of leaves. Besides that, nitrogen 55 ppm was the most effective for increasing the number of leaves. Next, at day 20, normal temperature was the best result for increasing leaf number, stem diameter, root length, root fresh weight, root dry weight, shoot fresh weight, shoot dry weight, and growth index. Then, nitrogen 110 ppm + normal temperature was the most significant response of root-shoot ratio. Conclusion: Normal temperature and minimal nitrogen doses were the most effective conditions for enhancing the growth of cherry tomato plants. Novelty/Originality of this article: This study examines cherry tomato plants' remarkable ability to grow at normal temperature and minimum nitrogen level.
References
Ahanger, M. A., Maodong, Q., Huang, Z., Xu, X., Begum, N., Qin, C., Zhang, C., Ahmad, N., Mustafa, N. S., Ashraf, M., & Zhang, L. (2021). Improving growth and photosynthetic performance of drought stressed tomato by application of nano-organic fertilizer involves up-regulation of nitrogen, antioxidant and osmolyte metabolism. Ecotoxicology and Environmental Safety, 216, 112195. https://doi.org/10.1016/j.ecoenv.2021.112195
Alam, M. N., Yang, L., Yi, X., Wang, Q., & Robin A. H. K. (2022). Role of melatonin in inducing the physiological and biochemical processes associated with heat stress tolerance in tall fescue (Festuca arundinaceous). Journal of Plant Growth Regulation, 41, 2759-2768. https://doi.org/10.1007/s00344-021-10472-6
Ali, M. M., Shafique, M. W., Gull, S., Naveed, W. A., Javed, T., Yousef, A. F., & Mauro, R. P. (2021). Alleviation of heat stress in tomato by exogenous application of sulfur. Horticulturae, 7, 21. https://doi.org/10.3390/horticulturae7020021
Anas, M., Liao, F., Verma, K. K., Sarwar, M. A., Mahmood, A., Chen, Z. L., Li, Q., Zeng, X. P., Liu, Y., & Li, Y. R. (2020). Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biological Research, 53, 47. https://doi.org/10.1186/s40659-020-00312-4
Anderson, R., Bayer, P. E., & Edwards, D. (2020). Climate change and the need for agricultural adaptation. Current Opinion in Plant Biology, 56, 197-202. https://doi.org/10.1016/j.pbi.2019.12.006
Ayankojo, I. T. & Morgan, K. T. (2020). Increasing air temperatures and it’s effects on growth and productivity of tomato in South Florida. Plants, 9, 1245. https://doi.org/10.3390/plants9091245
Banjade, D., Khanal, D., Regmi, P., Shrestha, A., Banjade, N., Dahal, B. (2024). Mitigating heat stress in tomato by synergetic effect of trichoderma and organic manures. Journal of Agriculture and Natural Resources. 7(1), 50-61. https://doi.org/10.3126/janr.v7i1.73124
Barreto, R. F., Prado, R. M., Leal, A. J. F., Troleis, M. J. B., Junior, G. B. S., Monteiro, C. C., Santos, L. C. N., & Carvalho, R. F. (2016). Mitigation of ammonium toxicity by silicon in tomato depends on the ammonium concentration. Acta Agriculturae Scandinavica. 66, 483-488. https://doi.org/10.1080/09064710.2016.1178324
Benes, B., Guan, K., Lang, M., Long, S. P., Lynch, J. P., Marshall-Colon, A., Peng, B., Schnable, J., Sweetlove, L. J., & Turk, M. J. (2020). Multiscale computational models can guide experimentation and targeted measurements for crop improvement. The Plant Journal, 103, 21-31. https://doi.org/10.1111/tpj.14722
Bonomelli, C., de Freitas, S. T., Aguilera, C., Palma, C., Garay, R., Dides, M., Brossard, N., & O’Brein, J. A. (2021). Ammonium excess leads to Ca restrictions, morphological changes, and nutritional imbalances in tomato plants, which can be monitored by the N/Ca ratio. Agronomy, 11, 1437. https://doi.org/10.3390/agronomy11071437
Cai, Z., Zhang, M., Xie, J., Kong, T., Zhang, Y., He, Z., & Zhang, Z. (2024). Appropriate supply of irrigation and nitrogen produced higher yields of cherry tomatoes. International Journal of Agricultural and Biological Engineering, 17, 149-158. https://doi.org/10.25165/j.ijabe.20241702.8018
Cammarano, D., Ronga, D., Mola, I. D., Mori, M., & Parisi, M. (2020). Impact of cllimate change on water and nitrogen use efficiencies of processing tomato cultivated in Italy. Agricultural Water Management, 241, 106335. https://doi.org/10.1016/j.agwat.2020.106336
Cannata, C., Basile, F., Bella, E. L., Arciello, S., Abreu, A. C., Fernandez, I., Leonardi, C., & Mauro, R. P. (2024). Exhausted plant cell culture media as potential biostimulants to enhance plant growth and nitrogen use efficiency in tomatoes under optimal and reduced nitrogen supply. Journal of Plant Nutrition and Soil Science, 187, 780-791. https://doi.org/10.1002/jpln.202300464
Chang, Y., Zhang, X., Wang, C., Ma, N., Xie, J., & Zhang, J. (2024). Fruit quality analysis and flavor comprehensive evaluation of cherry tomatoes of different colors. Foods, 13, 1898. https://doi.org/10.3390/foods13121898
Chen, X., Zhu, Y., Ding, Y., Pan, R., Shen, W., Yu, X., & Xiong, F. (2021). The relationship between characteristics of root morphology and grain filling in wheat under drought stress. Peer J, 9, e12015. https://doi.org/10.7717/peerj.12015
Chukwudi, U. P., Kutu, F. R., & Mavengahama S. (2021). Influence of heat stress, variations in soil type, and soil amendment on the growth of three drought-tolerant maize varieties. Agronomy, 11(8), 1485. https://doi.org/10.3390/agronomy11081485
Cohen, I., Halpern, M., Yermiyahu, U., Bar-Tal A., Gendler, T., & Rachmilevitch, S. (2019). CO2 and nitrogen interaction alters root anatomy, morphology, nitrogen partitioning and photosynthetic acclimation of tomato plants. Planta, 250, 1423-1432. https://doi.org/10.1007/s00425-019-03232-0
Dasgan, H. Y., Dere, S., Akhoundnejad, Y., & Arpaci, B. B. (2021). Effects of high-temperature stress during plant cultivation on tomato (Solanum lycopersicum L.) fruit nutrient content. Journal of Food Quality, 7, 1-15. https://doi.org/10.1155/2021/7994417
Daxini, A., Ryan, M., O’Donoghue, C., & Barnes, A. P. (2019). Understanding farmers’ intentions to follow a nutrient management plan using the theory of planned behaviour. Land Use Policy, 85, 428-437. https://doi.org/10.1016/j.landusepol.2019.04.002
Delarue, M., Benhamed, M., & Fragkostefanakis S. (2025). The role of epigenetics in tomato stress adaptation. New Crops, 2, 100044. https://doi.org/10.1016/j.ncrops.2024.100044
Deng, A. N., Luo, J. H., Su, C. L., Wu, X. F., & Zhao, M. (2021). Reduced inorganic fertiliser in combination with an alkaline humic acid fertiliser amendment on acid growth media properties and cherry tomato growth. New Zealand Journal of Crop and Horticultural Science, 49, 225-242. https://doi.org/10.1080/01140671.2021.1887294
Ding, Y., Shi, Y., & Yang, S. (2020). Molecular regulation of plant responses to environmental temperatures. Molecular Plant, 13, 544-564. https://doi.org/10.1016/j.molp.2020.02.004
Duffaut, C., Brondeau, F., & Gasparini, J. (2023). An original and efficient fertilizer for cherry tomato plants grown in urban agriculture: feral pigeon guano. Urban Agriculture & Regional Food Systems, 8, e20046. https://doi.org/10/1002/uar2.20046
Dziedek, C., Oheimb, G., Calvo, L., Fichtner, A., Kriebitzch, W. U., Marcos, E., Pitz, W. T., & Hardtle, W. (2016). Does excess nitrogen supply increase the drought sensitivity of european beech (Fagus sylvatica L.) seedlings? Plant Ecology, 217, 393-405. https://doi.org/10.1007/s11258-016-0581-1
Edwards, C. E., Ewers, B. E., & Weinig, C. (2016). Genotypic variation in biomass allocation in response to field drought has a greater affect on yield than gas exchange or phenology. BMC Plant Biology, 16, 185. https://doi.org/10.1186/s12870-016-0876-3
Efendi, D., Budiarto, R., Poerwanto, R., Santosa, E., & Agusta, A. (2021). Relationship among agroclimatic variables, soil, and leaves nutrient status with the yield and main composition of kaffir lime (Citrus hystric DC) leaves essential oil. Metabolites, 11, 260. https://doi.org/10.3390/metabo11050260
Etaga, H. O., Okoro, I., Aforka, K. F., & Ngonadi, L. O. (2021). Methods of estimating correlation coefficients in the presence of influential outlier(s). African Journal of Mathematics and Statistics Studies. 4, 157-185. https://doi.org/10.52589/AJMSS-LLNZXUOZ
Feller, C., Favre, P., Janka, A., Zeeman, S. C., Gabriel, J. P., & Reinhardt, D. (2015). Mathematical modeling of the dynamics of shoot-root interactions and resource partitioning in plant growth. PloS ONE, 10(7), e0127905. https://doi.org/10.1371/journal.pone.0127905
Giri, A., Heckathorn, S., Mishra, S., & Krause, C. (2017). Heat stress decreases levels of nutrient-uptake and assimilation proteins in tomato roots. Plants, 6, 6. https://doi.org/10.3390/plants6010006
Gonzalez-Garcia, M. P., Conesa, C. M., Lozano-Enguita, A., Caro, E., Castrillo, G., & del Pozo, J. C. (2023). Temperature changes in the root ecosystem affect plant functionality. Plant Communications, 4, 100514. https://doi.org/10.1016/j.xplc.2022.100514
Guo, L., Louise-Borna, M., Niu, W., & Liu, F. (2021). Biochar amendment improves shoot biomass of tomato seedllings and sustains water relations and leaf gas exchange rates under different irrigation and nitrogen regimes. Agricultural Water Management, 245, 106580. https://doi.org/10.1016/j.agwat.2020.106580
Guo, X. X., Zhao, D., Zhuang, M. H., Wang, C., & Zhang, F. S. (2021). Fertilizer and pesticide reduction in cherry tomato production to achieve multiple environmental benefits in Guangxi, China. Science of The Total Environment, 793, 148527. https://doi.org/10.1016/j.scitotenv.2021.148527
Guo, Y., Chen, Y., Searchinger, T. D., Zhou, M., Pan, D., Yang, J., Wu, L., Cui, Z., Zhang, W., Zhang, F., Ma, L., Sun, Y., Zondlo, M. A., Zhang, L., & Mauzerall, D. L. (2020). Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management. Nature Food, 1, 648-658. https://doi.org/10.1038/s43016-020-00162-z
Hayat, F., Ahmed, M. A., Zarebanadkouki, M., Javaux, M., Cai, G., & Carminati, A. (2020). Transpiration reduction in maize (Zea mays L.) in response to soil drying. Frontiers of Plant Science, 10, 1695. https://doi.org/10.3389/fpls.2019.01695
He, Z., Su, C., Cai, Z., Wang, Z., Li, R., Liu, J., He, J., & Zhang, Z. (2022). Multi-factor coupling regulation of greenhouse environment based on comprehensive growth of cherry tomato seedlings. Scientia Horticulturae, 297, 110960. https://doi.org/10.1016/j.scienta.2022.110960
Hilty, J., Muller, B., Pantin, F., & Leuzinger, S. (2021). Plant growth: the what, the how, and the why. New Phytologist, 232, 25-41. https://doi.org/10.1111/nph.17610
Hoshikawa, K., Pham, D., Ezura, H., Schafleitner, R., & Nakashima, K. (2021). Genetic and molecular mechanisms conferring heat stress tolerance in tomato plants. Frontiers in Plant Science. 12, 786688. https://doi.org/10.3389/fpls.2021.786688
Hostetler, A. N., Tinoco, S. M. S., & Sparks, E. E. (2024). Root responses to abiotic stress: a comparative look at root system architecture in maize and sorghum. Journal of Experimental Botany, 75, 553-562. https://doi.org/10.1093/jxb/erad390
Hussain, S., Liu, T., Iqbal, N., Brestic, M., Pang, T., Mumtaz, M., Shafiq, I., Li, S., Wang, L., Gao, Y., Khan, A., Ahmad, I., Allakhverdiev, S. I., Liu, W., & Yang W. (2020). Effects of lignin, cellulose, hemicellulose, sucrose and monosaccharide carbohydrates on soybean physical stem strength and yield in intercropping. Photochemical and Photobiological Sciences, 19, 462-472. https://doi.org.10.1039/c9pp00369j
Intergovernmental Panel on Climate Change (IPCC). (2023). In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II, and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva. https://10.59327/IPCC/AR6-9789291691647.001
Jahan, M. S., Guo, S., Sun, J., Shu, S., Wang, Y., El-Yazied, A. A., Alabdallah, N. M., Hikal, M., Mohamed, M. H. M., Ibrahim, M. F. M., & Hasan M. M. (2021). Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiology and Biochemistry, 167, 309-320. https://doi.org/10.1016/j.plaphy.2021.08.002
Jerca, I. O., Cimpeanu, S. M., Teodorescu, R. I., Draghici, E. M., Nitu, O. A., Sannan, S., & Arshad, A. (2024). A comprehensive assessment of the morphological development of inflorescence, yield potential, and growth attributes of summer-grown, greenhouse cherry tomatoes. Agronomy, 14(3), 556. https://doi.org/10.3390/agronomy14040556
Jia, C., Yu, X., Zhang, M., Liu, Z., Zou, P., Ma, J., & Xu, Y. (2019). Application of melatonin-enhanced tolerance to high-temperature stress in cherry radish (Raphanus sativus L. var. radculus pers). Journal of Plant Growth Regulation, 39, 631-640. https://doi.org/10.1007/s00344-019-10006-1
John, A. A., & Stephen, R. (2024). Adaptation and mitigation of high-temperature stress in tomato. International Journal of Environment and Climate Change, 14, 322-331. https://doi.org/10.9734/ijecc/2024/v14i64231
Joung, M., Kim, Y. J., & Shin, Y. (2024). Assessment of lycopene, polyphenols, antioxidant compounds, and activities in colored cherry tomato cultivars harvested in Korea. Food Science Biotechnology. https://doi.org/10.1007/s10068-024-01691-0
Kanter, D. R., Bartolini, F., Kugelberg, S., Leip, A., Oenema, O., & Uwizeye, A. (2020). Nitrogen pollution policy beyond the farm. Nature Food, 1, 27-32. https://doi.org/10.1038/s43016-019-0001-5
Karkute, S. G., Ansari, W. A., Singh, A. K., Prabhkar, M. S., Rai, N., Bahadur, A., & Singh, J. (2021). Characterization of high-temperature stress-tolerant tomato (Solanum lycopersicum L.) genotypes by biochemical analysis and expression profilling of heat-responsive genes. 3 Biotech, 11, 45. https://doi.org/10.1007/s13205-020-02587-6
Khan, M. A., Gemenet, D. C., & Villordon, A. (2016). Root system architecture and abiotic stress tolerance: current knowledge in root and tuber crops. Frontiers in Plant Science. 7, 1584. https://doi.org/10.3389/fpls.2016.01584
Khan, U. M., Sevindik, M., Zarrabi, A., Nami, M., Ozdemir, B., Kaplan, D. N., Selamoglu, Z., Hasan, M., Kumar, M., Alshchri, M. M., & Rad, J. S. (2021). Lycopene: food sources, biological activities, and human health benefits. Oxidative Medicine and Cellular Longevity, 2021, 2713511. https://doi.org/10.1155/2021/2713511
Kong, L., Wen, Y., Jiao, X., Liu, X., & Xu, Z. (2021). Interactive regulation of light quality and temperature on cherry tomato growth and photosynthesis. Environmental and Experimental Botany, 18, 104326. https://doi.org/10.1016/j.envexpbot.2020.104326
Kumar, M., Chandran, D., Tomar, M., Bhuyan, D. J., Grasso, S., Sa, A. G. A., Carciofi, B. A. M., Radha, Dhumal, S., Singh, S., Senapathy, M., Changan, S., Dey, A., Pandiselvam, R., Mahato, D. K., Amarowicz, R., Rajalingam, S., Vishvanathan, M., Saleena, L. A. K., Mekhemar, M. (2022). Valorization potential of tomato (Solanum lycopersicum L.) seed: nutraceutical quality, food properties, safety aspects, and application as a health-promoting ingredient in foods. Horticulturae, 8, 265. https://doi.org/10.3390/horticulturae8030265
Kusumiyati, K., Ahmad, F., Khan, M. R., Soleh, M. A., & Sundari, R. S. (2023). Productivity of cherry tomato cultivars as influenced by watering capacities and microclimate control designs. The Open Agriculture Journal, 17, e18743315280566. https://doi.org/10.2174/0118743315280566231119172531
Lal, R. (2020). Home gardening and urban agriculture for advancing food and nutritional security in response to the COVID-19 pandemic. Food Security, 12, 871-876. https://doi.org/10.1007/s12571-020-01058-3
Lee, K., Rajametov, S. N., Jeong, H. B., Cho, M. C., Lee, O. J., Kim, S. G., Yang, E. Y., & Chae, W. B. (2022). Comprehensive understanding of selecting traits for heat tolerance during vegetative and reproductive growth stages in tomato. Agronomy, 12, 834. https://doi.org/10.3390/agronomy12030834
Lei, F., Pan, X., Lin, H., Zhang, Z., Zhang, W., Tan, H., Yang, M., & Liu, H. (2024). Silicon improves the plant growth and fruit quality of cherry tomato (Solanum lycopersicum var. cerasiforme) under nitrogen imbalance by modulating nitrogen assimilation and photosynthesis. Journal of Soil Science and Plant Nutrition, 24, 5208-5219. https://doi.org/10.1007/s42729-024-01902-x
Li, C., Yang, Z., Zhang, C., Luo, J., Zhang, F., & Qiu, R. (2023). Effects of nitrogen application in recovery period after different high temperature stress on plant growth of greenhouse tomato at flowering and fruiting stages. Agronomy, 13(6), 1439. https://doi.org/10.3390/agronomy13061439
Lin, Z. H., Chen, C. S., Zhong, Q. S., Ruan, Q. C., Chen, Z. H., You, X. M., Shan, R. Y., & Li, X. L. (2021). The GC-TOF/MS-based metabolomic analysis reveals altered metabolic profiles in nitrogen-deficient leaves and roots of tea plants (Camellia sinensis). BMC Plant Biology, 21, 506. https://doi.org/10.1186/s12870-021-03285-y
Liu, F., Song, Q., Zhao, J., Mao, L., Bu, H., Hu, Y., & Zhu, X. G. (2021). Canopy occupation volume as an indicator of canopy photosynthesis capacity. New Phytologist, 232, 941-956. https://doi.org/10.1111/nph.17611
Lopez-Bucio, J., Pelagio-Flores, R., & Herrera-Estrella, A. (2015). Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae, 196, 109-123. https://doi.org/10.1016/j.scienta.2015.08.043
Luo, J., Yang, Z., Zhang, F., & Li, C. (2023). Effect of nitrogen application on enhancing high-temperature stress tolerance of tomato plants during the flowering and fruiting stage. Frontiers in Plant Science, 14, 1172078. https://doi.org/10/3389/fpls.2023.1172078
Luo, L., Zhang, Y., & Xu, G. (2020). How does nitrogen shape plant architecture? Journal of Experimental Botany, 71, 4415-4427. https://doi.org/10.1093/jxb/eraa187
Machado, J., Vasconcelos, M. W., Soares, C., Fidalgo, F., Heuvelink, Ep., & Carvalho, S. M. P. (2023). Young tomato plants respond differently under single or combined mild nitrogen and water deficit: an insight into morphophysiological responses and primary metabolism. Plants, 12(5), 1181. https://doi.org/10.3390/plants12051181
Maheshwari, S. (2021). Vertical farming: resilience towards climate change. In: Kateja, A., & R. Jain (Eds.), Urban growth and environmental issues in India. Springer.
Maksimov, I., Apaseev, A., Maksimov, V., Alekseev, E., Pushkarenko, N., & Maksimov, N. (2021). Towards a mathematical model of plant growth. IOP Conference Series: Earth and Environmental Science, 935, 012031. https://doi.org/10.1088/1755-1315/935/1/012031
Marin, E. E. T., Wang, C., Singha, A., Bloem, E., Zandi, P., Barabasz-Krasny, B., Darma, A., & Wang, Y. (2022). Reduced nitrogen proportion during the vegetative growth stage improved fruit yield and nitrogen uptake of cherry tomato plants under sufficient soil water regime. Acta Agriculturae Scandinavica, 72, 700-708. https://doi.org/10.1080/09064710.2022.2060855
Martins, A. O., Omena-Garcia, R. P., Oliveira, F. S., Silva, W. A., Hajirezaei, M. R., Vallarino, J. G., Ribeiro, D. M., Fernie, A. R., Nunes-Nesi, A., & Araujo, W. L. (2019). Differential root and shoot responses in the metabolism of tomato plants exhibiting reduced levels of gibberellin. Environmental and Experimental Botany, 157, 331-343. https://doi.org/10.1016/j.envexpbot.2018.10.036
Masood, S., Zhao, X. Q., & Shen, R. F. (2020). Bacillus pumilus promotes the growth and nitrogen uptake of tomato plants under nitrogen fertilization. Scientia Horticulturae, 272, 109581. https://doi.org/10.1016/j.scientia.2020.109581
Miao, L., Wang, X., Yu, C., Ye, C., Yan, Y., & Wang, H. (2024). What factors control plant height? Journal of Integrative Agriculture, 23, 1803-1824. https://doi.org/10.1016/j.jia.2024.03.058
Mu, X., & Chen, Y. (2021). The physiological response of photosynthesis to nitrogen deficiency. Plant Physiology Biochemistry, 158, 76-82. https://doi.org/10.1016/j.plaphy.2020.11.019
Munoz, L. C., Rivera, M., Munoz, J. E., Sarsu, F., & Rao, I. M. (2021). Heat stress-induced changes in shoot and root characteristics of genotypes of tepary bean (Phaseolus acutifolius A. Gray), common bean (Phaseolus vulgaris L.) and their interspecific lines. Australian Journal of Crop Science, 15, 50-58. https://search.informit.org/doi/10.3316/informit.176355405395181
Nafees, K., Kumar, M., & Rose, B. (2019). Effect of different temperatures on germination and seedling growth of primed seeds of tomato. Russian Journal of Plant Physiology, 66, 778-784. https://doi.org/10.1134/S1021443719050169
Niu, H., Wang, T., Dai, Y., Yao, M., Li, B., Zheng, J., Mao, L., Zhao, M., Zhanyang, X., & Zhang, F. (2024). Optimal irrigation and fertilization enhanced tomato yield and water and nitrogen productivities by increasing rhizosphere microbial nitrogen fixation. Agronomy, 14(9), 2111. https://doi.org/10.3390/agronomy14092111
Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B., & Kamili, A. N. (2021). Microbiota and biofertilizers. Springer Nature.
Pandey, A., Masthigowda, M. H., Kumar, R., Pandey, G. C., Awaji, S. M., Singh, G., & Singh, G. P. (2023). Physio-biochemical characterization of wheat genotypes under temperatures stress. Physiology and Molecular Biology of Plants, 29, 131-143. https://doi.org/10.1007/s12298-022-01267-4
Papadopoulos, A. P. (1998). Seasonal fertigation schedules for greenhouse tomatoes-concepts and delivery systems. Acta Horticultura, 458, 123-140. https://doi.org/10/17660/ActaHortic.1998.458.14
Parrotta, L., Aloisi, I., Faleri, C., Romi, M., Duca, S. D., & Cai, G. (2020). Chronic heat stress affects the photosynthetic apparatus of Solanum lycopersicum L. cv micro-tom. Plant Physiology and Biochemistry, 154, 463-475. https://doi.org/10.1016/j.plaphy.2020.06.047
Park, B. M., Jeong, H. B., Yang, E. Y., Kim, M. K., Kim, J. W., Chae, W., Lee, O. J., Kim, S. G., & Kim, S. (2023). Differential responses of cherry tomatoes (Solanum lycopersicum) to long-term heat stress. Horticulturae, 9(3), 343. https://doi.org/10.3390/horticulturae90303434
Patel, A. H., Sharma, H. P., & Vaishali. (2024). Physiological functions, pharmacological aspects and nutritional importance of green tomato- a future food. Critical Reviews in Food Science and Nutrition, 64, 9711-9739. https://doi.org/10.1080/10408398.2023.2212766
Peng, B., Guang, K., Tang, J., Ainsworth, E. A., Asseng, S., Bernacchi, C. J., Cooper, M., Delucia, E. H., Elliott, J. W., Ewert, F., Grant, R. F., Gustafson, D. I., Hammer, G. L., Jin, Z., Jones, J. W., Kimm, H., Lawrence, D. M., Li, Y., Lombardozzi, D. L., Marshall-Colon, A., Messina, C. D., Ort, D. R., Schnable, J. C., Vallejos, C. E., Wu, A., Yin, X., & Zhou, W. (2020). Towards a multiscale crop modelling framework for climate change adaptation assessment. Nature Plants, 6, 338-348. https://doi.org/10.1038/s41477-020-0625-3
Pessemier, J. D., Moturu, T. R., Nacry, P., Ebert, R., Gernier, H. D., Tillard, P., Swarup, K., Wells, D. M., Haseloff, J., Murray, S. C., Bennett, M. J., Inze, D., Vincent, C. I., & Hermans, C. (2022). Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in arabidopsis. Journal of Experimental Botany, 73, 3569-3583. https://doi.org/10.1093/jxb/erac118
Pommerening, A., & Muszta, A. (2016). Relative plant growth revisited: towards a mathematical standardisation of separate approaches. Ecological Modelling, 320, 383-392. https://doi.org/10.1016/j.ecolmodel.2015.10.015
Qin, K., Dong, X., & Leskovar, D. I. (2023). Improving tomato nitrogen use efficiency with lignite-derived humic substances. Scientia Horticulturae, 321, 112243. https://doi.org/10.1016/j.scienta.2023.112243
Rajametov, S. N., Yang, E. Y., Jeong, H. B., Cho, M. C., Chae, S. Y., & Paudel, N. (2021). Heat treatment in two tomato cultivars: a study of the effect on physiological and growth recovery. Horticulturae, 7(5), 119. https://doi.org/10.3390/horticulturae7050119
Ramos, M. M. (2020). Movimentacao de cations no perfil de um argissolo amarelo sob condicionantes. Universidade Federal do Ceara Press.
Rangaswamy, T. C., Sridhara, S., Ramesh, N., Gopakkali, P., El-Ansary, D. O., Mahmoud, E. A., Abdelmohsen, S. A. M., Abdelbacki, A. M. M., Elansary, H. O., & Abdel-Hamid, A. M. E. (2021). Assessing the impact of higher levels of CO2 and temperature and their interactions on tomato (Solanum lycopersicum L.). Plants, 10, 256. https://doi.org/10.3390/plants10020256
Richardson, M. L. & Arlotta, C. G. (2022). Producing cherry tomatoes in urban agriculture. Horticulturae, 8, 274. https://doi.org/10.3390/horticulturae8040274
Sakamoto, M., & Suzuki, T. (2015). Elevated root-zone temperature modulates growth and quality of hydroponically grown carrots. Agricultural Sciences, 6, 749-757. https://dx.doi.org/10.4236/as.2015.68072
Sang, Q. Q., Shu, S., Shan, X., Guo, S. R., & Sun, J. (2016). Effects of exogenous spermidine on antioxidant system of tomato seedlings exposed to high temperature stress. Russian Journal of Plant Physiology, 63, 645-655. https://doi.org//10.1134/S1021443716050113
Schroder, C., Hafner, F., Larsen, O. C., & Krause, A. (2021). Urban organic waste for urban farming: growing lettuce using vermicompost and thermophilic compost. Agronomy, 11(6), 1175. https://doi.org/10.3390/agronomy11061175
Shamshiri, R. R., Jones, J. W., Thorp, K. R., Ahmad, D., Man, H. C., Taheri, S. (2018). Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review. International Agrophyisology, 32, 287-302. https://doi.org/10.1515/intag-2017-0005
Shaukat, M., Abbasi, A., Ramzan, K., Hina, A., Memon, S. Q., Maqsood, Z., Gaafar, A. R. Z., Hodhod, M. S., & Lamlom, S. F. (2024). Ameliorating heat stressed conditions in wheat by altering its physiological and phenotypic traits associated with varying nitrogen levels. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52, 13471. https://doi.org/10.15835/nbha52113471
Sherzod, R., Yang, E. Y., Cho, M. C., Chae, S. Y., & Chae, W. B. (2020). Physiological traits associated with high temperature tolerance differ by fruit types and sized in tomato (Solanum lycopersicum L.). Horticulture, Environment, and Biotechnology, 61,837-847. https://doi.org/10.1007/s13580-020-00280-4
Shi, W., Lin, L., Shao, S., He, A., & Ying, Y. (2020). Effects of simulated nitrogen deposition on Phyllostachys edulis (Carr.) seedlings under different watering conditions: is seedling drought tolerance related to nitrogen metabolism? Plant Soil, 448, 539-552. https://doi.org/10.1007/s11104-020-04445-z
Taratime, W., Chuanchumkan, C., Maneerattanarungroj, P., Trunjaruen, A., Theerakulpisut, P., & Dongsansuk, A. (2022). Effect of heat stress on some physiological and anatomical characteristics of rice (Oryza sativa L.) cv. KDML105 callus and seedling. Biology, 11, 1587. https://doi.org/10.3390/biology11111587
Tassis, L. M., de Souza, J. E. T., & Krohling, R. A. (2021). A deep learning approach combining instance and semantic segmentation to identify diseases and pests of coffee leaves from in-field images. Computers and Electronics in Agriculture, 186, 106191. https://doi.org/10.1016/j.compag.2021.106191
Toda, Y., Wakatsuki, H., Aoike, T., Kajiya-Kanegae, H., Yamasaki, M., Yoshioka, T., Ebana, K., Hayashi, T., Nakagawa, H., Hasegawa, T., & Iwata, H. (2020). Predicting biomass of rice with intermediate traits: modeling method combining crop growth models and genomic prediction models. PLoS ONE, 15, e0233951. https://doi.org/10.1371/journal.pone.0233951
Tyagi, J., Ahmad, S., & Malik, M. (2022). Nitrogen fertilizers: impact on environment sustainability, mitigation strategies, and challenges. International Journal of Environmental Science and Technology, 19, 11649-11672. https://doi.org/10.1007/s13762-022-04027-9
Ubbens, J., Cieslak, M., Prusinkiewicz, P., & Stavness, I. (2018). The use of plant models in deep learning: an application to leaf counting in rosette plants. Plant Methods, 14, 1-10. https://doi.org/10.1186/s13007-018-0273-z
Ullah, I., Mao, H., Rasool, G., Gao, H., Javed, Q., Sarwar, A., & Khan, M. I. (2021). Effect of deficit irrigation and reduced N fertilization on plant growth, root morphology and water use efficiency of tomato grown in soilless culture. Agronomy, 11(2), 228. https://doi.org/10.3390/agronomy11020228
Vats, S., Bansal, R., Rana, N., Kumawat, S., Bhatt, V., Jadhav, P., Kale, V., Sathe, A., Sonah, H., Jugdaohsingh, R., Sharma, T. R., & Deshmukh, R. (2022). Unexplored nutritive potential of tomato to combat global malnutrition. Critical Reviews in Food Science and Nutrition, 62, 1003-1034. https://doi.org/10.1080/10408398.2020.1832954
Vieira, I. G. S., Nobre, R. G., Dias, A. S., & Pinheiro, F. W. A. (2016). Cultivation of cherry tomato under irrigation with saline water and nitrogen fertilization. Revista Brasileira de Engenharia Agricola e Ambiental, 20, 55-61. https://doi.org/10.1590/1908-1929/agriambi.v20n1p55-61
Wang, L., Yang, Z. Q., Yang, S. Q., Li, J., Li, K. W., & Hou, M. (2017). Effects of high temperature and different air humidity on growth and senescence characteristics for tomato seedlings. Chinese Journal of Agrometeorology, 38(12), 761-770. https://doi.org/10.3969/j.ssn.1000-6362.2017.12.002
Wang, L., Chen, X., Du, Y., Zhang, D., Tang, Z. (2022). Nutrients regulate the effects of arbuscular mycorrhizal fungi on the growth and reproduction of cherry tomato. Frontiers Microbiology, 13, 843010. https://doi.org/10.3389/fmicb.2022.843010
Wang, R., Zeng, J., Chen, K., Ding, Q., Shen, Q., Wang, M., & Wuo S. (2022). Nitrogen improves plant cooling capacity under increased enviromental temperature. Plant Soil, 472, 329-344. https://doi.org/10.1007/s11104-021-05244-w
Wielemaker, R., Oenema, O., Zeeman, G., Weijma, J. (2019). Fertile cities: nutrient management practices in urban agriculture. Science of the Total Environment, 668, 1277-1288. https://doi.org/10.1016/j.scitotenv.2019.02.424
Wu, X., Yu, L., & Pehrsson, P. R. (2022). Are processed tomato products as nutritious as fresh tomatoes? Scoping review on the effects of industrial processing on nutrients and bioactive compounds in tomatoes. Advances in Nutrition, 13, 138-151. https://doi.org/10.1093/advances/nmab109
Xiao, L., Wang, G., Wang, E., Liu, S., Chang, J., Zhang, P., Zhou, H., Wei, Y., Zhang, H., Zhu, Y., Shi, Z., & Luo, Z. (2024). Spatiotemporal co-optimization of agricultural management practices towards climate-smart crop production. Nature Food, 5, 59-71. https://doi.org/10.1038/s43016-023-00891-x
Xie, Q., Fernando, K. M. C., Mayes, S., & Sparkes, D. L. (2017). Identifying seedling root architectural traits associated with yield and yield components in wheat. Annals of Botany, 119, 1115-1129. https://doi.org/10.1093/aob/mcx001
Xu, Y., Guan, X., Han, Z., Zhou, L., Zhang, Y., Asad, M. A. U., Wang, Z., Jin, R., Pan, G., & Cheng, F. (2022). Combined effect of nitrogen fertilizer application and high-temperature on grain quality properties of cooked rice. Frontiers in Plant Science, 13, 874033. https://doi.org/10.3389/fpls.2022.874033
Yang, Y., Zha, W., Tang, K., Deng, G., Du, G., & Liu, F. (2021). Effect of nitrogen supply on growth and nitrogen utilization in hemp (Cannabis sativa L.). Agronomy, 11(11), 2310. https://doi.org/10/3390/agronomy11112310
Yang, Z., Li, W., Li, D., & Chan, A. S. C. (2023). Evaluation of nutrional compositions, bioactive components, and antioxidant activity of three cherry tomato varieties. Agronomy, 13, 637. https://doi.org/10/3390/agronomy13030637
Zhang, L., Chang, Q., Hou, X., Wang, J., Chen, S., Zhang, Q., Wang, Z., Yin, Y., & Liu, J. (2023). The effect of high-temperature stress on the physiological indexes, chloroplast ultrastructure, and photosystems of two herbaceous peony cultivars. Journal of Plant Growth Regulation, 42, 1631-1646. https://doi.org/10.1007/s00344-022-10647-9
Zhang, Z., Cao, B., Chen, Z., & Xu, K. 2021. Grafting enhances the photosynthesis and nitrogen absorption of tomato plants under low-nitrogen stress. Journal of Plant Growth Regulation, 41, 1714-1725. https://doi.org/10.1007/s00344-021-10414-2
Zhou, R., Kong, L., Wu, Z., Rosenqvist, E., Wang, Y., Zhao, L., Zhao, T., & Ottosen, C. O. (2018). Physiological response of tomatoes at drought, heat and their combination followed by recovery. Physiologia Plantarum, 165, 144-154. https://doi.org/10.1111/ppl.12764
Zheng, Y., Yang, Z., Luo, J., Zhang, Y., Jiang, N., & Khattak, W. A. (2023). Transcriptome analysis of sugar and acid metabolism in young tomato fruits under high temperature and nitrogen fertilizer influence. Frontiers in Plant Science, 14, 1197553. https://doi.org/10.3389/fpls.2023.1197553
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Journal of Agrosociology and Sustainability
This work is licensed under a Creative Commons Attribution 4.0 International License.