GO-KNO3 fertilizer: Slow release fertilizer innovation from coconut shell waste as a solution to Indonesian food security
DOI:
https://doi.org/10.61511/jassu.v2i2.2025.1322Keywords:
Graphene Oxide, agricultural sector, hummer methodAbstract
Background: As a country with a large agricultural sector, using fertilizers is an essential factor. Inorganic fertilizers such as KNO3 are an option, but excessive use of fertilizers results in the accumulation of inorganic residues. The use of fertilizers that can release controlled nutrients is very necessary, one of which is by encapsulating with Graphene Oxide (GO). Methods: Coconut shell waste is used as the primary material for making GO which is synthesized by the Hummer method with variations in the mass of coconut shell graphite, the characterization of graphene oxide was Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Atomic Absorption Spectrophotometry (AAS). Findings: This research aims to synthesize GO and determine its characteristics as an encapsulation of KNO3 fertilizer. Conclusion: The FTIR results obtained in this research detected O-H bonds, C-H bonds, and C = C bonds. In TEM characterization, thin morphology results were obtained, indicating an oxidation process in the formation of graphene oxide. The AAS showed that the release of KNO3 from graphene oxide was maximum after 8 hours with a percentage of 93.8%. This fertilizer will be used to solve the problem of low plant absorption of macronutrients contained in fertilizers. Novelty/Originality of this article: Encapsulating KNO₃ fertilizer using GO to control nutrient release is a novel approach. This technique addresses the challenge of nutrient overuse and minimizes the environmental impact of inorganic fertilizers.
References
Abdulazeez, Q. M., Jami, M. S., & Alam, M. Z. (2018). Feasibility of using kaolin suspension as synthetic sludge sample. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 48(1), 25-39. https://semarakilmu.com.my/journals/index.php/fluid_mechanics_thermal_sciences/article/view/2770
Azizah, A. N., Widyasunu, P., & Rokhminarsi, E. (2021). Uji pupuk slow release urea dirakit dari berbagai bahan polimer terhadap pertumbuhan dan hasil bawang merah tiron pada tanah sawah Purwosari. Proceedings Series on Physical & Formal Sciences, 2, 53–60. https://doi.org/10.30595/pspfs.v2i.167
Calderón-Oliver, M., & Ponce-Alquicira, E. (2022). The role of microencapsulation in food application. Molecules, 27(5). https://doi.org/10.3390/MOLECULES27051499
Cardoso, C. E., Almeida, J. C., Lopes, C. B., Trindade, T., Vale, C., & Pereira, E. (2019). Recovery of rare earth elements by carbon-based nanomaterials—a review. Nanomaterials, 9(6), 814. https://doi.org/10.3390/nano9060814
Chen, D., Feng, H., & Li, J. (2012). Graphene oxide: preparation, functionalization, and electrochemical applications. Chemical Reviews, 112(11), 6027–6053. https://doi.org/10.1021/CR300115G
Cheng, H., He, Y., Xian, Y., & Hao, X. (2024). Performance and evaluation of slow-release fertilizer encapsulated by waterless synthesized GO sheets. Coatings (2079-6412), 14(9). https://doi.org/10.3390/coatings14091215
Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancolet, C., Likens, G. E. (2009). Controlling eutrophication: nitrogen and phosphorus. Science, 323(5917), 1014-1015. https://doi.org/10.1126/SCIENCE.1167755
Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292–305. https://doi.org/10.1016/J.GLOENVCHA.2008.10.009
Darianto, D., Siregar, A., Umroh, B., & Kurniadi, D. (2019). Simulasi kekuatan mekanis material komposit tempurung kelapa menggunakan metode elemen hingga. Journal of Mechanical Engineering Manufactures Materials and Energy, 3(1), 39. https://doi.org/10.31289/jmemme.v3i1.2443
David, W., & Ardiansyah. (2017). Organic agriculture in Indonesia: challenges and opportunities. Organic Agriculture, 7, 329-338. https://doi.org/10.1007/s13165-016-0160-8
De Cock, L. J., De Koker, S., De Geest, B. G., Grooten, J., Vervaet, C., Remon, J. P., Sukhorukov, G. B., Antipina, M. N. (2010). Polymeric multilayer capsules in drug delivery. Angewandte Chemie International Edition, 49(39), 6954-6973. https://doi.org/10.1002/ANIE.200906266
Dhillon, B. S., Kumar, V., Sagwal, P., Kaur, N., Singh Mangat, G., & Singh, S. (2021). Seed priming with potassium nitrate and gibberellic acid enhances the performance of dry direct seeded rice (Oryza sativa l.) in north-western india. Agronomy, 11(5). https://doi.org/10.3390/agronomy11050849
Duan, Q., Jiang, S., Chen, F., Li, Z., Ma, L., Song, Y., Yu, X., Chen, Y., Liu, H., & Yu, L. (2023). Fabrication, evaluation methodologies and models of slow-release fertilizers: a review. Industrial Crops and Products, 192, 116075. https://doi.org/10.1016/J.INDCROP.2022.116075
Fitriatin, B. N., Turmuktini, T., Sudana, M. I. K., Yogaswara, D., & Nugraha, R. (2020). Efisiensi pupuk dan peningkatan hasil padi Gogo dengan aplikasi pupuk hayati dan arang tempurung kelapa. soilrens, 18(1). https://doi.org/10.24198/soilrens.v18i1.29043
Ghoshal, T., Parmar, P. R., Maity, S., & Bhuyan, T. (2024). Unconventional role of 2D graphene-based nanomaterials and their composites in crop improvement and novel fertilizers application. Carbon-Based Nanomaterials in Biosystems: Biophysical Interface at Lower Dimensions, 243–268. https://doi.org/10.1016/B978-0-443-15508-6.00007-5
Guo, H. L., Wang, X. F., Qian, Q. Y., Wang, F. Bin, & Xia, X. H. (2009). A green approach to the synthesis of graphene nanosheets. ACS Nano, 3(9), 2653–2659. https://doi.org/10.1021/NN900227D/ASSET/IMAGES/MEDIUM/NN-2009-00227D_0011.GIF
Hamzah, M., Eryanti, K., Fitriani, D. A., & Astuti, D. (2019). Pembuatan granul slow release fertilizer menggunakan lateks-kitosan sebagai bahan binder alami yang ramah lingkungan. Cakra Kimia Indonesia E-Journal Of Applied Chemistry, 7(1), 12-19. https://ojs.unud.ac.id/index.php/cakra/article/view/51311
Hassanisaadi, M., Saberi Riseh, R., Rabiei, A., Varma, R. S., & Kennedy, J. F. (2023). Nano/micro-cellulose-based materials as remarkable sorbents for the remediation of agricultural resources from chemical pollutants. International Journal of Biological Macromolecules, 246, 125763. https://doi.org/10.1016/J.IJBIOMAC.2023.125763
Hikmat, M., Hati, D. P., Pratamaningsih, M. M., & Sukarman, S. (2023). Kajian lahan kering berproduktivitas tinggi di Nusa Tenggara untuk pengembangan pertanian. Jurnal Sumberdaya Lahan, 16(2), 119. https://doi.org/10.21082/jsdl.v16n2.2022.119-133
Irham, I., & Mulyo, J. H. (2016). Contribution of agricultural sector and sub sectors on Indonesian economy. Ilmu Pertanian (Agricultural Science), 18(3), 150-159. https://doi.org/10.22146/ipas.10616
JJin, L., Yang, K., Yao, K., Zhang, S., Tao, H., Lee, S.-T., Liu, Z., & Peng, R. (2012). Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability. ACS nano, 6(6), 4864-4875. https://doi.org/10.1021/NN300217Z
Kabiri, S., Baird, R., Tran, D. N. H., Andelkovic, I., McLaughlin, M. J., & Losic, D. (2018). Cogranulation of low rates of Graphene and Graphene Oxide with macronutrient fertilizers remarkably improves their physical properties. ACS Sustainable Chemistry and Engineering, 6(1), 1299–1309. https://doi.org/10.1021/ACSSUSCHEMENG.7B03655
Kabiri, S., Degryse, F., Tran, D. N. H., Da Silva, R. C., McLaughlin, M. J., & Losic, D. (2017). Graphene Oxide: A new carrier for slow release of plant micronutrients. ACS Applied Materials and Interfaces, 9(49), 43325–43335. https://doi.org/10.1021/acsami.7b07890
Katsumi, N., Kusube, T., Nagao, S., & Okochi, H. (2021). Accumulation of microcapsules derived from coated fertilizer in paddy fields. Chemosphere, 267, 129185. https://doi.org/10.1016/J.CHEMOSPHERE.2020.129185
Kenawy, E. R., Seggiani, M., Cinelli, P., Elnaby, H. M. H., & Azaam, M. M. (2020). Swelling capacity of sugarcane bagasse-g-poly (acrylamide)/attapulgite superabsorbent composites and their application as slow release fertilizer. European Polymer Journal, 133, 109769. https://doi.org/10.1016/j.eurpolymj.2020.109769
Khairani, S., Novianty, L., Novianty, L., Sembiring, J., Sembiring, J., Mukhlisin, D., & Mukhlisin, D. (2022). Pengaruh pemberian pupuk eco farming dan vermikompos pada pertumbuhan cabai merah (Capsicum annum L.). Agrosains: Jurnal Penelitian Agronomi, 24(1), 58. https://doi.org/10.20961/agsjpa.v24i1.60004
Krein, D. D. C., Rosseto, M., Cemin, F., Massuda, L. A., & Dettmer, A. (2023). Recent trends and technologies for reduced environmental impacts of fertilizers: A review. International Journal of Environmental Science and Technology, 20(11), 12903-12918. https://doi.org/10.1007/s13762-023-04929-2
Kurniawan, S. B. (2023). A Review of the Future of biomass-based fertilizer in Indonesia. EPRA Int. J. Econ. Bus. Rev, 11(7), 27-31. https://doi.org/10.36713/epra13759
Lalwani, G., Xing, W., & Sitharaman, B. (2014). Enzymatic degradation of oxidized and reduced graphene nanoribbons by lignin peroxidase. Journal of Materials Chemistry B, 2(37), 6354–6362. https://doi.org/10.1039/C4TB00976B
Li, L., Cen, J., Huang, L., Luo, L., & Jiang, G. (2023). Fabrication of a dual pH-responsive and photothermal microcapsule pesticide delivery system for controlled release of pesticides. Pest Management Science, 79(3), 969–979. https://doi.org/10.1002/PS.7265
Liu, Y., Wang, J., Chen, H., & Cheng, D. (2022). Environmentally friendly hydrogel: A review of classification, preparation and application in agriculture. Science of the Total Environment, 846. https://doi.org/10.1016/J.SCITOTENV.2022.157303
Liu, Z., Robinson, J. T., Sun, X., & Dai, H. (2008). PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society, 130(33), 10876–10877. https://doi.org/10.1021/JA803688X
LuLu, J., Cheng, M., Zhao, C., Li, B., Peng, H., Zhang, Y., Shao, Q., & Hassan, M. (2022). Application of lignin in preparation of slow-release fertilizer: Current status and future perspectives. Industrial Crops and Products, 176, 114267. https://doi.org/10.1016/J.INDCROP.2021.114267
Mahajan, M., Sharma, S., Kumar, P., & Pal, P. K. (2020). Foliar application of KNO3 modulates the biomass yield, nutrient uptake and accumulation of secondary metabolites of Stevia rebaudiana under saline conditions. Industrial Crops and Products, 145. https://doi.org/10.1016/j.indcrop.2020.112102
Malatesta, M. (2021). Transmission electron microscopy as a powerful tool to investigate the interaction of nanoparticles with subcellular structures. International Journal of Molecular Sciences, 22(23), 12789. https://doi.org/10.3390/ijms222312789
Mulyono, J., Sarwani, M., & Irianto, S. G. (2023). Global fertilizer crisis: The impact on indonesia. Jurnal Analis Kebijakan, 7(1), 29–47. https://doi.org/10.37145/JAK.V7I1.560
Noor, I., Arfiana, A., Finalis, E. R., Tjahjono, E. W., Suratno, H., Hamzah, H., Mulyono, A., Nuraini, L. D., Jaim, J., Suradi, S., & Saputra, H. (2022). Pengembangan Formula dan Pembuatan Controlled Release Fertilizer (CRF) untuk Bawang Merah. Vegetalika, 11(3), 196-206. https://doi.org/10.22146/veg.65667
Pandey, A., Dalal, S., Dutta, S., & Dixit, A. (2021). Structural characterization of polycrystalline thin films by X-ray diffraction techniques. Journal of Materials Science: Materials in Electronics, 32, 1341-1368. https://doi.org/10.1007/s10854-020-04998-w
Paungfoo-Lonhienne, C., Redding, M., Pratt, C., & Wang, W. (2019). Plant growth promoting rhizobacteria increase the efficiency of fertilisers while reducing nitrogen loss. Journal of Environmental Management, 233, 337–341. https://doi.org/10.1016/J.JENVMAN.2018.12.052
Perreault, F., Fonseca De Faria, A., & Elimelech, M. (2015). Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 44(16), 5861–5896. https://doi.org/10.1039/C5CS00021A
Petrulis, D., & Petrulyte, S. (2019). Potential use of microcapsules in manufacture of fibrous products: A review. Journal of Applied Polymer Science, 136(7), 47066. https://doi.org/10.1002/APP.47066
Pratiwi, L., Eddy, D. R., Al Anshori, J., Harja, A., Wahyudi, T., Mulyawan, A. S., & Julaeha, E. (2022). Microencapsulation of Citrus aurantifolia essential oil with the optimized CaCl2 crosslinker and its antibacterial study for cosmetic textiles. RSC Advances, 12(47), 30682–30690. https://doi.org/10.1039/D2RA04053K
Putri, M. A., Karimi, S., Ridwan, E., & Muharja, F. (2024). Unveiling the welfare puzzle: Exploring fertilizer subsidy effects on farmer’s earnings in Indonesia. Sriwijaya International Journal of Dynamic Economics and Business, 8(2), 129–146. https://doi.org/10.29259/SIJDEB.V8I2.129-146
Putri, N. A., & Supardi, Z. A. I. (2023). Sintesis dan karakterisasi Graphene Oxide (GO) dari bahan alam tempurung kelapa. Jurnal Inovasi Fisika Indonesia (IFI), 12(2), 47-55. https://doi.org/10.26740/ifi.v12n2.p47-55
Ran, J., Wang, X., Liu, Y., Yin, S., Li, S., & Zhang, L. (2023). Microreactor-based micro/nanomaterials: fabrication, advances, and outlook. Materials Horizons, 10(7), 2343–2372. https://doi.org/10.1039/D3MH00329A
Rudmin, M., Banerjee, S., Yakich, T., Tabakaev, R., Ibraeva, K., Buyakov, A., Soktoev, B., & Ruban, A. (2020). Formulation of a slow-release fertilizer by mechanical activation of smectite/glauconite and urea mixtures. Applied Clay Science, 196, 105775. https://doi.org/10.1016/J.CLAY.2020.105775
Schindler, D. W. (1974). Eutrophication and recovery in experimental lakes: Implications for lake management. Science, 184(4139), 897–899. https://doi.org/10.1126/SCIENCE.184.4139.897
Shekari, F., Abbasi, A., & Mustafavi, S. H. (2017). Effect of silicon and selenium on enzymatic changes and productivity of dill in saline condition. Journal of the Saudi Society of Agricultural Sciences, 16(4), 367–374. https://doi.org/10.1016/J.JSSAS.2015.11.006
Sim, D. H. H., Tan, I. A. W., Lim, L. L. P., & Hameed, B. H. (2021). Encapsulated biochar-based sustained release fertilizer for precision agriculture: A review. Journal of Cleaner Production, 303. https://doi.org/10.1016/J.JCLEPRO.2021.127018
Syuaib, M. F. (2016). Sustainable agriculture in Indonesia: Facts and challenges to keep growing in harmony with environment. Agricultural Engineering International: CIGR Journal, 18(2), 170-184. https://cigrjournal.org/index.php/Ejounral/article/view/3747
Umar, F., & Burhendi, F. C. A. (2022). Studi sifat optik dari hasil sintesis Grafena Oksida dengan metode ultrasonik. Wahana Fisika, 7(2), 93-104. https://doi.org/10.17509/wafi.v7i2.49740
Weng, J., Zhai, X., Zhang, G., Su, X., Yang, Y., Ding, F., ... & Xie, J. (2023). Densified and water-repellent biodegradable starch/PBAT composite films-packaged fertilizers: Prediction model, controlled-release mechanism and rice application. Chemical Engineering Journal, 475, 146242. https://doi.org/10.1016/J.CEJ.2023.146242
Yan, H., Zhu, X., Dai, F., He, Y., Jing, X., Song, P., & Wang, R. (2021). Porous geopolymer based eco-friendly multifunctional slow-release fertilizers for promoting plant growth. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 631. https://doi.org/10.1016/J.COLSURFA.2021.127646
Yang, X., Wang, Y., Huang, X., Ma, Y., Huang, Y., Yang, R., Duan, H., & Chen, Y. (2011). Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. Journal of materials chemistry, 21(10), 3448-3454. https://doi.org/10.1039/C0JM02494E
Yang, X., Zhang, X., Ma, Y., Huang, Y., Wang, Y., & Chen, Y. (2009). Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. Journal of Materials Chemistry, 19(18), 2710–2714. https://doi.org/10.1039/B821416F
Yang, Y., Zhang, R., Zhang, X., Chen, Z., Wang, H., & Li, P. C. H. (2022). Effects of Graphene Oxide on plant growth: A review. Plants, 11(21), 2826. https://doi.org/10.3390/plants11212826
Ye, H. M., Li, H. F., Wang, C. S., Yang, J., Huang, G., Meng, X., & Zhou, Q. (2020). Degradable polyester/urea inclusion complex applied as a facile and environment-friendly strategy for slow-release fertilizer: Performance and mechanism. Chemical Engineering Journal, 381, 122704. https://doi.org/10.1016/J.CEJ.2019.122704
Yu, H., Zhang, B., Bulin, C., Li, R., & Xing, R. (2016). High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Scientific Reports, 6. https://doi.org/10.1038/srep36143
Zhang, M., Gao, B., Chen, J., Li, Y., Creamer, A. E., & Chen, H. (2014). Slow-release fertilizer encapsulated by graphene oxide films. Chemical Engineering Journal, 255, 107-113. http://dx.doi.org/10.1016/j.cej.2014.06.023
Zu, S. Z., & Han, B. H. (2009). Aqueous dispersion of graphene sheets stabilized by pluronic copolymers:Formation of supramolecular hydrogel. Journal of Physical Chemistry C, 113(31), 13651–13657. https://pubs.acs.org/doi/10.1021/jp9035887
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Ahmad Ali Muckharom, Davina Maritza Nastiti, Risma Aimatul Qudsiyah, Heri Sutanto

This work is licensed under a Creative Commons Attribution 4.0 International License.