Eco-intelligent integrated pre-fenton and artificial neural network system for debottlenecking the efficiency of physico-chemical treatment in POP-B3 waste management

Authors

  • Naufal Fawwaz Dienulloh Department of Chemical Engineering, Faculty of Engineering, Universitas Brawijaya, Malang, East Java, 65145, Indonesia
  • Rizky Maulana Riadhi Department of Chemical Engineering, Faculty of Engineering, Universitas Brawijaya, Malang, East Java, 65145, Indonesia
  • Supriyono Supriyono Department of Chemical Engineering, Faculty of Engineering, Universitas Brawijaya, Malang, East Java, 65145, Indonesia

DOI:

https://doi.org/10.61511/hcr.v2i1.2043

Keywords:

artificial neural network, hazardous waste (B3), persistent organic pollutants (pops), pid controller, prec-fenton

Abstract

Background: Persistent Organic Pollutants (POPs) in hazardous waste (B3) continue to increase due to industrial activities and are difficult to degrade using conventional methods. POPs can accumulate in the environment and pose serious health risks, such as cancer and reproductive disorders. The PREC-Fenton system has been proposed to enhance the treatment efficiency of hazardous waste, particularly POPs, by combining chemical reactions with energy utilization from salinity gradient power. Methods: The research methodology comprises modeling approaches, research framework formulation, system definition, thermodynamic property regression, model construction, system simulation, financial feasibility study, and simulation result analysis. Findings: The research findings indicate that the PREC-Fenton system is capable of reducing POPs by up to 1,038.8 kg/h with an efficiency of 99%, while producing 176.24 kg/h of clean water and generating 300.17 kW of energy with a conversion efficiency of 40%. The energy efficiency of the ORC increased by 46.13%. System optimization using an Artificial Neural Network (ANN) with 13 neurons in a single hidden layer yielded the lowest RMSE values and high accuracy, with R² values exceeding 0.96 for the KP, KI, and KD parameters. The economic analysis showed a break-even point (BEP) at 44% capacity, a net present value (NPV) of USD 125,529, an internal rate of return (IRR) of 33.48%, a discounted payback period (DPP) of 5 years, and a return on investment (ROI) of 190.89% before tax and 114.60% after tax. These results confirm that the PREC-Fenton system is efficient, cost-effective, and environmentally friendly. Conclusion: This study successfully developed an efficient PREC-Fenton system for hazardous waste (B3) treatment, achieving up to 99.99% degradation efficiency of POPs, clean water production of 176.24 kg/h, and energy generation of 300.17 kW. Novelty/Originality of this article: This article presents an innovative integration of the PREC-Fenton system with an adaptive control approach based on Artificial Neural Networks (ANN) to optimize the real-time degradation of POP-B3 waste.

References

Abdolrasol, M. G., Hussain, S. S., Ustun, T. S., Sarker, M. R., Hannan, M. A., Mohamed, R., ... & Milad, A. (2021). Artificial neural networks based optimization techniques: A review. Electronics, 10(21), 2689. https://doi.org/10.3390/electronics10212689

Akhtar, A. B. T., Naseem, S., Yasar, A., & Naseem, Z. (2021). Persistent organic pollutants (POPs): sources, types, impacts, and their remediation. Environmental pollution and remediation, 213-246. https://doi.org/10.1007/978-981-15-5499-5_8

Balogun, A. L., Marks, D., Sharma, R., Shekhar, H., Balmes, C., Maheng, D., ... & Salehi, P. (2020). Assessing the potentials of digitalization as a tool for climate change adaptation and sustainable development in urban centres. Sustainable Cities and Society, 53, 101888. https://doi.org/10.1016/j.scs.2019.101888

Belalcázar-Saldarriaga, A., Prato-Garcia, D., & Vasquez-Medrano, R. (2019). Photo-Fenton processes in raceway reactors: Technical, economic, and environmental implications during treatment of colored wastewaters. Journal of Cleaner Production, 182, 818–829. https://doi.org/10.1016/j.jclepro.2018.02.058

Bestwick, T., & Camarda, K. V. (2023). Artificial Neural Network-Based Real-Time PID Controller Tuning. Computer Aided Chemical Engineering, 52, 1609–1614. https://doi.org/10.1016/B978-0-443-15274-0.50256-0

Bevacqua, M., Tamburini, A., Papapetrou, M., Cipollina, A., Micale, G., & Piacentino, A. (2017). Reverse electrodialysis with NH₄HCO₃-water systems for heat-to-power conversion. Energy, 137, 1293–1307. https://doi.org/10.1016/j.energy.2017.07.012

Chen, Q., Lü, F., Zhang, H., & He, P. (2023). Where should Fenton go for the degradation of refractory organic contaminants in wastewater? Water Research, 229, 119479. https://doi.org/10.1016/j.watres.2022.119479

Dapaah, M. F., Niu, Q., Yu, Y.-Y., You, T., Liu, B., & Cheng, L. (2022). Efficient persistent organic pollutant removal in water using MIL-metal–organic framework driven Fenton-like reactions: A critical review. Chemical Engineering Journal, 431, 134182. https://doi.org/10.1016/j.cej.2021.134182

Deb, A., Rumky, J., & Sillanpää, M. (2023). Fenton, Photo-Fenton, and Electro-Fenton Systems for Micropollutant Treatment Processes. In M. Khalid, Y. Park, R. R. Karri, & R. Walvekar. Advanced Oxidation Processes for Micropollutant. CRC Press. https://doi.org/10.1201/9781003247913-8

Devi, N. L. (2020). Persistent organic pollutants (POPs): environmental risks, toxicological effects, and bioremediation for environmental safety and challenges for future research. Bioremediation of Industrial Waste for Environmental Safety: Volume I: Industrial Waste and Its Management, 53-76. https://doi.org/10.1007/978-981-13-1891-7_4

Dubowski, Y., Alfiya, Y., Gilboa, Y., Sabach, S., & Friedler, E. (2024). A combined approach of electrodialysis pretreatment and vacuum UV for removing micropollutants from natural waters. Water Research, 251, 121152. https://doi.org/10.1016/j.watres.2024.121152

Eisenmenger, N., Pichler, M., Krenmayr, N., Noll, D., Plank, B., Schalmann, E., ... & Gingrich, S. (2020). The Sustainable Development Goals prioritize economic growth over sustainable resource use: a critical reflection on the SDGs from a socio-ecological perspective. Sustainability Science, 15(4), 1101-1110. https://doi.org/10.1007/s11625-020-00813-x

Foteinis, S., Monteagudo, J. M., Durán, A., & Chatzisymeon, E. (2019). Environmental sustainability of the solar photo-Fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale. Science of The Total Environment, 612, 605–612. https://doi.org/10.1016/j.scitotenv.2017.08.277

George, A. S., & George, A. H. (2024). Towards a Super Smart Society 5.0: Opportunities and Challenges of Integrating Emerging Technologies for Social Innovation. Partners Universal International Research Journal, 3(2), 01-29. https://doi.org/10.5281/zenodo.11522048

Getachew Gizaw, D., Periyasamy, S., Senthil Kumar, P., Salilih, E. M., Redda, Z. T., Velusamy, K., & Rangasamy, G. (2023). Artificial neural network based identification of process dynamics and neural network controller design for continuous distillation column. Sustainable Energy Technologies and Assessments, 57, 103168. https://doi.org/10.1016/j.seta.2023.103168

Giacalone, F., Vassallo, F., Scargiali, F., Tamburini, A., Cipollina, A., & Micale, G. (2020). The first operating thermolytic reverse electrodialysis heat engine. Journal of Membrane Science, 595, 117522. https://doi.org/10.1016/j.memsci.2019.117522

Hajiali, M., Farhadian, M., & Tangestaninejad, S. (2022). Enhance performance ZnO/ Bi2MoO6/ MIL-101(Fe) grown on fluorine-doped tin oxide as photoanode and CuO/ Cu2O based on Cu mesh photocathode in the photocatalytic fuel cell. Energy Conversion and Management, 269, 116137. https://doi.org/10.1016/j.enconman.2022.116137

Hamedani, E. A., Abasalt, A., & Talebi, S. (2024). Application of microbial fuel cells in wastewater treatment and green energy production: a comprehensive review of technology fundamentals and challenges. Fuel, 370, 131855. https://doi.org/10.1016/j.fuel.2024.131855

Hariram, N. P., Mekha, K. B., Suganthan, V., & Sudhakar, K. (2023). Sustainalism: An integrated socio-economic-environmental model to address sustainable development and sustainability. Sustainability, 15(13), 10682. https://doi.org/10.3390/su151310682

Hassan, M., Kanwal, S., Singh, R. S., SA, M. A., Anwar, M., & Zhao, C. (2024). Current challenges and future perspectives associated with configuration of microbial fuel cell for simultaneous energy generation and wastewater treatment. International Journal of Hydrogen Energy, 50, 323-350. https://doi.org/10.1016/j.ijhydene.2023.08.134

Hassan, M., Liu, Y., Naidu, R., Du, J., & Qi, F. (2020). Adsorption of Perfluorooctane sulfonate (PFOS) onto metal oxides modified biochar. Environmental Technology & Innovation, 19, 100816. https://doi.org/10.1016/j.eti.2020.100816

Indrawan, N., Simkins, B., Kumar, A., & Huhnke, R. L. (2020). Economics of distributed power generation via gasification of biomass and municipal solid waste. Energies, 13(14), 3703. https://doi.org/10.3390/en13143703

Jiménez-Bambague, E. M., Madera-Parra, C. A., Rangel-Delgado, M. F., Quintero- Martinez, I., Miranda-Mosquera, D., Aristizabal-Apolinar, J. S., & Machuca-Martínez, F. (2023). Photo-Fenton and Electro-Fenton performance for the removal of pharmaceutical compounds in real urban wastewater. Electrochimica Acta, 442, 141905. https://doi.org/10.1016/j.electacta.2023.141905

Kasinathan, P., Pugazhendhi, R., Elavarasan, R. M., Ramachandaramurthy, V. K., Ramanathan, V., Subramanian, S., ... & Alsharif, M. H. (2022). Realization of sustainable development goals with disruptive technologies by integrating industry 5.0, society 5.0, smart cities and villages. Sustainability, 14(22), 15258. https://doi.org/10.3390/su142215258

Kim, D.-H., Lee, H., Kim, K., Kim, S., Kim, J. H., Ko, Y. W., Hawes, I., Oh, J.-E., & Kim, J.-T. (2024). Persistent organic pollutants in the Antarctic marine environment: The influence impacts of human activity, regulations, and climate change. Environmental Pollution, 363, 125100. https://doi.org/10.1016/j.envpol.2024.125100

Kumar, R., Singh, L., Zularisam, A. W., & Hai, F. I. (2018). Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances. International Journal of Energy Research, 42(2), 369-394. https://doi.org/10.1002/er.3780

Kwon, K., Park, B. H., Kim, D. H., & Kim, D. (2015). Parametric study of reverse electrodialysis using ammonium bicarbonate solution for low-grade waste heat recovery. Energy Conversion and Management, 103, 104–110. https://doi.org/10.1016/j.enconman.2015.06.051

Leng, Q., Li, F., Tao, Z., Wang, Z., & Wu, X. (2024). Advanced Wastewater Treatment: Synergistic Integration of Reverse Electrodialysis with Electrochemical Degradation Driven by Low-Grade Heat. Energies, 17(21), 5362. https://doi.org/10.3390/en17215362

Leng, Q., Xu, S., Wu, X., Wang, S., Jin, D., Wang, P., Wu, D., & Dong, F. (2022). Degrade Methyl Orange by a Reverse Electrodialysis Reactor Coupled with Electrochemical Direct Oxidation and Electro-Fenton Processes. Electrocatalysis, 13(3), 242–254. https://doi.org/10.1007/s12678-022-00712-y

Machado, F., Teixeira, A. C. S. C., & Ruotolo, L. A. M. (2023). Critical review of Fenton and photo-Fenton wastewater treatment processes over the last two decades. International Journal of Environmental Science and Technology, 20(12), 13995–14032. https://doi.org/10.1007/s13762-023-05015-3

Mandal, A., Senthil Kumar, P., Poorva, C. S., Srinivasa Raju, L., Balasubramani, S. R., & Rangasamy, G. (2024). Research progress of persistent organic pollutants in water: Classification, sources, potential risks, and treatment approaches. Water Practice & Technology, 19(3), 937–959. https://doi.org/10.2166/wpt.2024.031

Mardani, M. M., Lazar, R. D., Mijatovic, N., & Dragičević, T. (2022). Artificial neural network-based constrained predictive real-time parameter adaptation controller for grid-tied VSCs. IEEE Journal of Emerging and Selected Topics in Power Electronics, 11(2), 1507-1517. https://doi.org/10.1109/JESTPE.2022.3214342

Matesun, J., Petrik, L., Musvoto, E., Ayinde, W., & Ikumi, D. (2024). Limitations of wastewater treatment plants in removing trace anthropogenic biomarkers and future directions: A review. Ecotoxicology and Environmental Safety, 281, 116610. https://doi.org/10.1016/j.ecoenv.2024.116610

Mishra, A., Kumari, M., Kumar, R., Iqbal, K., & Thakur, I. S. (2022). Persistent organic pollutants in the environment: Risk assessment, hazards, and mitigation strategies. Bioresource Technology Reports, 19, 101143. https://doi.org/10.1016/j.biteb.2022.101143

Moallemi, E. A., Malekpour, S., Hadjikakou, M., Raven, R., Szetey, K., Ningrum, D., ... & Bryan, B. A. (2020). Achieving the sustainable development goals requires transdisciplinary innovation at the local scale. One Earth, 3(3), 300-313. https://doi.org/10.1016/j.oneear.2020.08.006

Peng, C. Y., Kuo, C. C., & Tsai, C. T. (2021). Optimal configuration with capacity analysis of PV-PLUS-BESS for behind-the-meter application. Applied Sciences, 11(17), 7851. https://doi.org/10.3390/app11177851

Pizzorno, J. E., & Murray, M. T. (Eds.). (2021). Textbook of natural medicine (Fifth edition). Elsevier.

Raka, Y. D., Karoliussen, H., Lien, K. M., & Burheim, O. S. (2020). Opportunities and challenges for thermally driven hydrogen production using reverse electrodialysis system. International Journal of Hydrogen Energy, 45(2), 1212–1225. https://doi.org/10.1016/j.ijhydene.2019.05.126

Ramírez-Márquez, C., Posadas-Paredes, T., Raya-Tapia, A. Y., & Ponce-Ortega, J. M. (2024). Natural resource optimization and sustainability in society 5.0: A comprehensive review. Resources, 13(2), 19. https://doi.org/10.3390/resources13020019

Ranade, A., Singh, K., Tamburini, A., Micale, G., & Vermaas, D. A. (2022). Feasibility of producing electricity, hydrogen, and chlorine via reverse electrodialysis. Environmental Science & Technology, 56(22), 16062–16072. https://doi.org/10.1021/acs.est.2c03407

Rokni, L., Rezaei, M., Rafieizonooz, M., Khankhajeh, E., Mohammadi, A. A., & Rezania, S. (2023). Effect of Persistent Organic Pollutants on Human Health in South Korea: A Review of the Reported Diseases. Sustainability, 15(14), 10851. https://doi.org/10.3390/su151410851

Seborg, D. E., Edgar, T. F., Mellichamp, D. A., & Doyle III, F. J. (2020). Process Dynamics and Control (4th ed.). Hoboken, NJ: John Wiley & Sons.

Smara, M., Khalladi, R., Moulai-Mostefa, N., Madi, K., Mansour, D., Lekmine, S., Benslama, O., Tahraoui, H., Zhang, J., & Amrane, A. (2024). Efficiency of hydrogen peroxide and Fenton reagent for polycyclic aromatic hydrocarbon degradation in contaminated soil: Insights from experimental and predictive modeling. Processes, 12(3), 621. https://doi.org/10.3390/pr12030621

Tarascon, J.-M., & Simon, P. (2015). Electrochemical energy storage. John Wiley & Sons. https://doi.org/10.1002/9781118998151

Thakur, A. K., & Malmali, M. (2022). Advances in polymeric cation exchange membranes for electrodialysis: An overview. Journal of Environmental Chemical Engineering, 10(5), 108295. https://doi.org/10.1016/j.jece.2022.108295

Tian, H., & Wang, Y. (2022). A new photoelectrochemical cell coupled with the Fenton reaction to remove pollutant and generate electricity under the drive of waste heat. Science of The Total Environment, 839, 156277. https://doi.org/10.1016/j.scitotenv.2022.156277

Ukoba, K., Olatunji, K. O., Adeoye, E., Jen, T. C., & Madyira, D. M. (2024). Optimizing renewable energy systems through artificial intelligence: Review and future prospects. Energy & Environment, 35(7), 3833-3879. https://doi.org/10.1177/0958305X241256293

Wang, N., Sun, X., Zhao, Q., & Wang, P. (2021). Treatment of polymer-flooding wastewater by a modified coal fly ash-catalysed Fenton-like process with microwave pre-enhancement: System parameters, kinetics, and proposed mechanism. Chemical Engineering Journal, 406, 126734. https://doi.org/10.1016/j.cej.2020.126734

Wassie, Y. T., & Ahlgren, E. O. (2023). Long-term optimal capacity expansion planning for an operating off-grid PV mini-grid in rural Africa under different demand evolution scenarios. Energy for Sustainable Development, 76, 101305. https://doi.org/10.1016/j.esd.2023.101305

Wilailak, S., Yang, J.-H., Heo, C.-G., Kim, K.-S., Bang, S.-K., Seo, I.-H., Zahid, U., & Lee, C.-J. (2021). Thermo-economic analysis of Phosphoric Acid Fuel-Cell (PAFC) integrated with Organic Ranking Cycle (ORC). Energy, 220, 119744. https://doi.org/10.1016/j.energy.2020.119744

Xu, W., Xue, W., Huang, H., Wang, J., Zhong, C., & Mei, D. (2021). Morphology controlled synthesis of α-Fe2O3-x with benzimidazole-modified Fe-MOFs for enhanced photo-Fenton-like catalysis. Applied Catalysis B: Environmental, 291, 120129. https://doi.org/10.1016/j.apcatb.2021.120129

Downloads

Published

2025-02-28

Issue

Section

Articles

Citation Check