Synthesis of silicon carbide (SiC) micro-particles from PCB waste through dry milling as a candidate for microfluidic particles in quenching media

Authors

  • Rifqi Aditya Rehanda Department of Metallurgical and Materials Engineering, Faculty of Engineering, Univeritas Indonesia, Depok, West Java, 16424, Indonesia
  • Myrna Ariati Mochtar Department of Metallurgical and Materials Engineering, Faculty of Engineering, Univeritas Indonesia, Depok, West Java, 16424, Indonesia
  • Wahyuaji Narottama Putra Department of Metallurgical and Materials Engineering, Faculty of Engineering, Univeritas Indonesia, Depok, West Java, 16424, Indonesia

DOI:

https://doi.org/10.61511/hcr.v2i1.1800

Keywords:

ball to powder ratio, dry milling, particle size, PCB, SiC

Abstract

Background: The increasing demand for electronic devices due to technological advancements has led to a rise in electronic waste, particularly printed circuit boards (PCBs). This study aims to utilize PCB waste, which contains non-metal particles such as silicon (Si) and silicon carbide (SiC), to enhance the thermal conductivity of cooling media. Methods: The research process began with the crushing of PCBs, followed by leaching with 1M HCl for 24 hours. Subsequently, pyrolysis was conducted using argon at 500°C for 30 minutes. The resulting PCB particles were then subjected to dry milling in a planetary ball mill with varying ball-to-powder ratios of 1:10, 1:30, and 1:50 for durations of 10 and 20 hours, using steel balls. The milled particles were characterized using X-ray fluorescence (XRF), X-ray diffraction (XRD), and particle size analysis (PSA). Findings: XRF analysis revealed that SiO2 was the predominant compound. XRD results indicated significant SiC phase growth in the 1:50 parameter with a 20-hour milling time. PSA results showed the smallest particle size of 627.6 d.nm with a polydispersity index of 0.047 in the 1:10 variable with a 20-hour milling time. Conclusion: The study successfully demonstrates the potential of utilizing PCB waste to produce SiC micro-particles, which can enhance the thermal conductivity of cooling media. This approach not only provides a method for recycling electronic waste but also contributes to the development of more efficient cooling systems. Novelty/Originality of this article: This research introduces an innovative approach to recycling electronic waste by converting PCB waste into valuable SiC micro-particles, offering a novel method for improving cooling media in industrial applications.

References

Apmann, K., Fulmer, R., Soto, A., & Vafaei, S. (2021). Thermal conductivity and viscosity: Review and optimization of effects of nanoparticles. Materials, 14(5), 1–75. https://doi.org/10.3390/ma14051291

Bhaskar, S., Pollock, K. M., Yoshida, M., & Lahann, J. (2010). Towards designer microparticles: simultaneous control of anisotropv, shape and size. Small, 6(3), 404–411. https://doi.org/10.1002/smll.200901306

Cui, J., & Zhang, L. (2008). Metallurgical recovery of metals from electronic waste: A review. Journal of Hazardous Materials, 158(2–3), 228–256. https://doi.org/10.1016/j.jhazmat.2008.02.001

Delhaes, P. (2002). Chemical vapor deposition and infiltration processes of carbon materials. Carbon, 40(5), 641–657. https://doi.org/10.1016/S0008-6223(01)00195-6

Dong, Y., Li, Y., Zhao, C., Feng, Y., Chen, S., & Dong, Y. (2019). Mechanism of the rapid mechanochemical degradation of hexachlorobenzene with silicon carbide as an additive. Journal of Hazardous Materials, 379(January), 120653. https://doi.org/10.1016/j.jhazmat.2019.05.046

Ghosh, P., Marder, R., Berner, A., & Kaplan, W. D. (2020). The influence of temperature on the solubility limit of Ca in alumina. Journal of the European Ceramic Society, 40(15), 5767–5772. https://doi.org/10.1016/j.jeurceramsoc.2020.07.057

Gusev, A. I., & Kurlov, A. S. (2008). Production of nanocrystalline powders by high-energy ball milling: Model and experiment. Nanotechnology, 19(26). https://doi.org/10.1088/0957-4484/19/26/265302

Hartmann, U. (2019). 18. Nanopartikel. Materialien, Systeme Und Methoden, 1, 1–96. https://doi.org/10.1515/9783110361964-003

Hometz, B., Michel, H. J., & Halbritter, J. (1994). ARXPS studies of SiC2-SiC interfaces and oxidation of 6H SiC single crystal Si-(001) and C-(001) surfaces. Journal of Materials Research, 9(12), 3088–3094. https://doi.org/10.1557/JMR.1994.3088

Hosokawa, M., Nogi, K., Naito, M., & Yokoyama, T. (2008). Nanoparticle Technology Handbook. Elsevier. https://doi.org/10.1016/B978-0-444-53122-3.X5001-6

Hu, X., Yin, D., Chen, X., & Xiang, G. (2020). Experimental investigation and mechanism analysis: Effect of nanoparticle size on viscosity of nanofluids. Journal of Molecular Liquids, 314, 113604. https://doi.org/10.1016/j.molliq.2020.113604

Hubau, A., Chagnes, A., Minier, M., Touzé, S., Chapron, S., & Guezennec, A. G. (2019). Recycling-oriented methodology to sample and characterize the metal composition of waste Printed Circuit Boards. Waste Management, 91, 62–71. https://doi.org/10.1016/j.wasman.2019.04.041

Jing, G., Zhong, Y., Zhang, L., Gou, J., Ji, X., Huang, H., Zhang, Y., Wang, Y., He, H., & Tang, X. (2015). Increased dissolution of disulfiram by dry milling with silica nanoparticles. Drug Development and Industrial Pharmacy, 41(8), 1328–1337. https://doi.org/10.3109/03639045.2014.949266

Khaliq, A., Rhamdhani, M. A., Brooks, G., & Masood, S. (2014). Metal extraction processes for electronic waste and existing industrial routes: A review and Australian perspective. Resources, 3(1), 152–179. https://doi.org/10.3390/resources3010152

Lee, S. W., Park, S. D., Kang, S., Bang, I. C., & Kim, J. H. (2011). Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications. International Journal of Heat and Mass Transfer, 54(1–3), 433–438. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.026

Li, X., Zou, C., Lei, X., & Li, W. (2015). Stability and enhanced thermal conductivity of ethylene glycol-based SiC nanofluids. International Journal of Heat and Mass Transfer, 89, 613–619. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.096

Munyalo, J. M., & Zhang, X. (2018). Particle size effect on thermophysical properties of nanofluid and nanofluid based phase change materials: A review. Journal of Molecular Liquids, 265(2017), 77–87. https://doi.org/10.1016/j.molliq.2018.05.129

Qin, X., Li, X., Chen, X., Yang, X., Zhang, F., Xu, X., Hu, X., Peng, Y., & Yu, P. (2019). Raman scattering study on phonon anisotropic properties of SiC. Journal of Alloys and Compounds, 776, 1048–1055. https://doi.org/10.1016/j.jallcom.2018.10.324

Sayyad, S., Kumar, S., Bongale, A., Kamat, P., Patil, S., & Kotecha, K. (2021). Data-Driven Remaining Useful Life Estimation for Milling Process: Sensors, Algorithms, Datasets, and Future Directions. IEEE Access, 9, 110255–110286. https://doi.org/10.1109/ACCESS.2021.3101284

Slack, G. A. (1964). Thermal conductivity of pure and impure silicon, silicon carbide, and diamond. Journal of Applied Physics, 35(12), 3460–3466. https://doi.org/10.1063/1.1713251

Tihanyi, J. (1992). Smart power devices. Microelectronic Engineering, 19(1-4), 141-143. https://doi.org/10.1016/0167-9317(92)90409-K

Trisnayanti, N. P. (2020). Metode sintesis nanopartikel. Universitas Indonesia.

Triyono, T., Latief Al Yusron, A., & Surojo, E. (2020). Study Pengaruh Kecepatan Pengadukan pada Proses Stir Casting terhadap Sifat Fisik dan Mekanik AMC Berpenguat Pasir Silica yang Dilakukan Proses Electroless Coating. Mekanika: Majalah Ilmiah Mekanika, 19(1), 41–46. https://doi.org/10.20961/mekanika.v19i1.40248

Wang, F., Cheng, L., Xie, Y., Jian, J., & Zhang, L. (2015). Effects of SiC shape and oxidation on the infrared emissivity properties of ZrB2-SiC ceramics. Journal of Alloys and Compounds, 625, 1–7. https://doi.org/10.1016/j.jallcom.2014.09.191

Wang, H., Sun, S., Wang, D., & Tu, G. (2012). Characterization of the structure of TiB 2/TiC composites prepared via mechanical alloying and subsequent pressureless sintering. Powder Technology, 217, 340–346. https://doi.org/10.1016/j.powtec.2011.10.046

Wardhana, M. V. S. (2013). Pengaruh kecepatan putar, berat, dan diameter bola pada planetary ball mill sizer terhadap peningkatan produksi zinc oxide. Universitas Jember. https://repository.unej.ac.id/handle/123456789/98793

Wei, X., Wei, Y., Lu, J., Huang, Y., Sun, Y., Wang, Y., Liu, L., Liu, B., & Han, W. (2023). Evolution of Lewis acidity by mechanochemical and fluorination treatment of silicon carbide as novel catalyst for dehydrofluorination reactions. Molecular Catalysis, 537(November 2022), 112948. https://doi.org/10.1016/j.mcat.2023.112948

Wu, R., Zhou, K., Yue, C. Y., Wei, J., & Pan, Y. (2015). Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Progress in Materials Science, 72, 1–60. https://doi.org/10.1016/j.pmatsci.2015.01.003

Zaman, S. A. K., Palaniandy, S., & Hussain, Z. (2010). Mechanochemical synthesis of nanostructured SiO2-SiC composite through high-energy milling. Journal of Alloys and Compounds, 502(1), 250–256. https://doi.org/10.1016/j.jallcom.2010.04.158

Zhang, Z., Du, X., Wang, J., Wang, W., Wang, Y., & Fu, Z. (2014). Synthesis and structural evolution of B4C-SiC nanocomposite powders by mechanochemical processing and subsequent heat treatment. Powder Technology, 254, 131–136. https://doi.org/10.1016/j.powtec.2013.12.055

Downloads

Published

2025-02-28

Issue

Section

Articles

Citation Check