Synthesis of mesoporous silica-carbon composite as solid acid catalyst for esterification reaction

Authors

  • Halimatussa’diyah Chemical Engineering, Faculty of Industrial Technology and Systems Engineering, Sepuluh Nopember Istitute of Technology, Surabaya, East Java, 60111, Indonesia
  • Ahmad Hadi Muharrom Chemical Engineering, Faculty of Industrial Technology and Systems Engineering, Sepuluh Nopember Istitute of Technology, Surabaya, East Java, 60111, Indonesia
  • Widiyastuti Chemical Engineering, Faculty of Industrial Technology and Systems Engineering, Sepuluh Nopember Istitute of Technology, Surabaya, East Java, 60111, Indonesia
  • Heru Setyawan Chemical Engineering, Faculty of Industrial Technology and Systems Engineering, Sepuluh Nopember Istitute of Technology, Surabaya, East Java, 60111, Indonesia

DOI:

https://doi.org/10.61511/hcr.v2i1.1690

Keywords:

acid catalyst, esterification, PEG, silica-carbon composite

Abstract

Background: In industrial process, there are numerous of reactions that need catalyst to be involved with, the typical catalyst used is of homogenous catalyst, that in fact, having several adversities in the process. Apparently, the homogenous catalyst may contain high toxicity, causing corrosion, and the difficulty of separating catalyst from the product resulted in the end of the process.. Methods: The purpose of this research are to evaluate the performance of solid acid catalysts with PEG template in the esterification reaction and determine the effect of sulfonation temperature on the characteristics of the catalyst. Findings:The synthesis procedure of a solid acid catalyst with PEG templates includes the synthesis of silica gel, carbonization, sulfonation, product characterization and esterification. Making silica gel using PEG as a carbon source and template was made by preparing a solution of waterglass (Na2SiO3) with a concentration of 8% SiO2. Besides that, a solution of 1 M hydrochloric acid (HCl) and 1 M sodium hydroxide (NaOH) solution were prepared. The template is removed by calcination at a temperature of 550ºC for 1 hour. Sulfonation was carried out by mixing silica-carbon composites with a concentrated 98% H2SO4 solution and heated at temperature variables (80⁰C, 120⁰C, 100⁰C, 135⁰C, and 150⁰C). While esterification was carried out with a variation of the catalyst mass of 0.2, 0.5, and 0.8 grams on the best results carried out at temperatures of 60⁰C, 70⁰C, and 80⁰C. The sample is characterized with Nitrogen Adsorption/Desorption Isotherms, Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Analysis (EDAX), Spectrophotometry FTIR (Fourier Transform Infra Red), ionic capacity experiment, and esterification reaction experiment. Conclusion: The study confirms that sulfonation temperature significantly influences the catalytic performance of PEG-templated silica-carbon solid acid catalysts in esterification reactions. Novelty/Originality of this Article: This research introduces a PEG-templated silica-carbon composite as a solid acid catalyst with tunable sulfonation temperatures to enhance esterification efficiency.

References

Chavan, F., Madje, B., Bharad, J., Ubale, M., Ware, M., Shingare, M., & Shinde, N. (2008). Silica gel supported NaHSO4 catalyzed organic reaction: An efficient synthesis of coumarins. Bulletin of the Ctalysis Society of India, 7, 41-45. http://catalysis.eprints.iitm.ac.in/1203/1/715.pdf

Chawla, K. K. (1988). Composite materials: science and engineering. MRS Bulletin.

Didik, P., Abdul, H., Hamzah, F., & Djoko, H. (2010). Sintesis ZSM-5 mesopori dengan metode pemeraman dan kristalisasi: Pengaruh waktu kristalisasi. Seminar Rekayasa Kimia Dan Proses 2010. https://eprints.undip.ac.id/28054/

Fadli, A. F. (2019). Sintesis Silika-Karbon Mesopori Asam Sulfonat Sebagai Katalis Untuk Reaksi Esterifikasi. Institut Teknologi Sepuluh Nopember.

Gaidhani, K. A., Harwalkar, M., Bhambere, D., & Nirgude, P. S. (2015). Lyophilization/freeze drying–a review. World Journal of Pharmaceutical Research, 4(8), 516-543. https://wjpr.s3.ap-south-1.amazonaws.com/article_issue/1438321656.pdf

Gupta, R., Kumar, V., Gupta, M., Paul, S., & Gupta, R. (2008). Silica supported zinc chloride catalyzed acetylation of amines, alcohols and phenols. Indian Journal of Chemistry, 47B, 1739-1743. https://doi.org/10.1002/chin.200910044

Hakim, L., & Palupi, D. (2015). Sintesis Komposit Silika Karbon Sebagai Aplikasi Adsorben.

Jagadeeswaraiah, K., Balaraju, M., Prasad, P. S., & Lingaiah, N. (2010). Selective esterification of glycerol to bioadditives over heteropoly tungstate supported on Cs-containing zirconia catalysts. Applied Catalysis A: General, 386(1-2), 166-170. https://doi.org/10.1016/j.apcata.2010.07.046

Kang, S., Ye, J., & Chang, J. (2013). Recent advances in carbon-based sulfonated catalyst: preparation and application. International Review of Chemical Engineering, 5(2), 133-144. https://hristov.com/jordan/pdfs/Recent%20Advances%20in%20Carbon-Based%20Sulfonated%20Catalyst-IRECHE_VOL_5_N_2.pdf

Kim, T. W., Ryoo, R., Gierszal, K. P., Jaroniec, M., Solovyov, L. A., Sakamoto, Y., & Terasaki, O. (2005). Characterization of mesoporous carbons synthesized with SBA-16 silica template. Journal of Materials Chemistry, 15(15), 1560-1571. https://doi.org/10.1039/B417804A

Marchetti, J. M., Pedernera, M. N., & Schbib, N. S. (2011). Production of biodiesel from acid oil using sulfuric acid as catalyst: kinetics study. International Journal of Low-Carbon Technologies, 6, 38-43. https://doi.org/10.1093/ijlct/ctq040

Parhusip, R., Iswahyudi, I., & Miskah, S. (2012). Pengaruh Waktu Reaksi Dan Penambahan Katalis Pada Pembuatan Gliserol Monooleat Dari Gliserol dan Asam Oleat. Jurnal Teknik Kimia.

Prasad, R., & Pandey, M. (2012). Rice husk ash as a renewable source for the production of value added silica gel and its application: an overview. Bulletin of chemical reaction engineering & catalysis, 7(1), 1-25. https://doi.org/10.9767/bcrec.7.1.1216.1-25

Prasetyo, A., Sembiring, A. C., & Rahmi, A. F. (2014). Katalis Asam Padat Silika Tersulfonasi untuk Proses Pembuatan Minyak Pelumas. In Pekan Ilmiah Mahasiswa Nasional Program Kreativitas Mahasiswa-Penelitian 2014. Indonesian Ministry of Research, Technology and Higher Education.

Prihanto, A., & Irawan, T. B. (2018). Pengaruh Temperatur, Konsentrasi Katalis Dan Rasio Molar Metanol-Minyak Terhadap Yield Biodisel Dari Minyak Goreng Bekas Melalui Proses Netralisasi-Transesterifikasi. Metana, 13(1), 30-36. https://doi.org/10.14710/metana.v13i1.11340

Setyawan, H., Yuwana, M., & Balgis, R. (2015). PEG-templated mesoporous silicas using silicate precursor and their applications in desiccant dehumidification cooling systems. Microporous and Mesoporous Materials, 218, 95-100. https://doi.org/10.1016/j.micromeso.2015.07.009

Shaterian, H. R., Doostmohammadi, R., & Ghashang, M. (2008). Sodium Hydrogen Sulfate as Effective and Reusable Heterogeneous Catalyst for the One‐pot Preparation of 14H‐[(Un) substituted phenyl]‐dibenzo [a, j] xanthene Leuco‐dye Derivatives. Chinese Journal of Chemistry, 26(2), 338-342. https://doi.org/10.1002/cjoc.200890065

Sulastri, S., & Kristianingrum, S. (2010, May). Berbagai macam senyawa silika: sintesis, karakterisasi dan pemanfaatan. Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA.

Sun, Q., Beelen, T. P., van Santen, R. A., Hazelaar, S., Vrieling, E. G., & Gieskes, W. W. (2002). PEG-mediated silica pore formation monitored in situ by USAXS and SAXS: systems with properties resembling diatomaceous silica. The Journal of Physical Chemistry B, 106(44), 11539-11548. https://doi.org/10.1021/jp026011r

Sun, Y. W., Wang, Y. J., Guo, W., Wang, T., & Luo, G. S. (2006). Triblock copolymer and poly (ethylene glycol) as templates for monolithic silica material with bimodal pore structure. Microporous and mesoporous materials, 88(1-3), 31-37. https://doi.org/10.1016/j.micromeso.2005.08.018

Valle-Vigón, P., Sevilla, M., & Fuertes, A. B. (2012). Sulfonated mesoporous silica–carbon composites and their use as solid acid catalysts. Applied Surface Science, 261, 574-583. https://doi.org/10.1016/j.apsusc.2012.08.059

Wahyuni, S., & Setyawa, H. (2013). Sintesis silika tersulfonasi dari waterglass dengan templat PEG sebagai katalis asam padat dalam pembuatan pelumas dari minyak nabati Synthesis of sulfonated silica from waterglass with PEG template as solid acid catalyst in the production of lubricant from vegetable oil. Menara Perkebunan, 81(2). https://doi.org/10.22302/iribb.jur.mp.v81i2.44

Zhang, Y., Dube, M. A., McLean, D. D. L., & Kates, M. (2003). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource technology, 89(1), 1-16. https://doi.org/10.1016/S0960-8524(03)00040-3

Ziarani, G. M., Lashgari, N., & Badiei, A. (2015). Sulfonic acid-functionalized mesoporous silica (SBA-Pr-SO3H) as solid acid catalyst in organic reactions. Journal of Molecular Catalysis A: Chemical, 397, 166-191. https://doi.org/10.1016/j.molcata.2014.10.009

Downloads

Published

2025-02-28

Issue

Section

Articles

Citation Check